
Modicon LMC078

EIO0000001909 03/2018
EI
O

00
00

00
19

09
.0

4

www.schneider-electric.com

Modicon LMC078
Motion Controller
Programming Guide
03/2018

The information provided in this documentation contains general descriptions and/or technical
characteristics of the performance of the products contained herein. This documentation is not
intended as a substitute for and is not to be used for determining suitability or reliability of these
products for specific user applications. It is the duty of any such user or integrator to perform the
appropriate and complete risk analysis, evaluation and testing of the products with respect to the
relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or
subsidiaries shall be responsible or liable for misuse of the information contained herein. If you
have any suggestions for improvements or amendments or have found errors in this publication,
please notify us.
You agree not to reproduce, other than for your own personal, noncommercial use, all or part of
this document on any medium whatsoever without permission of Schneider Electric, given in
writing. You also agree not to establish any hypertext links to this document or its content.
Schneider Electric does not grant any right or license for the personal and noncommercial use of
the document or its content, except for a non-exclusive license to consult it on an "as is" basis, at
your own risk. All other rights are reserved.
All pertinent state, regional, and local safety regulations must be observed when installing and
using this product. For reasons of safety and to help ensure compliance with documented system
data, only the manufacturer should perform repairs to components.
When devices are used for applications with technical safety requirements, the relevant
instructions must be followed.
Failure to use Schneider Electric software or approved software with our hardware products may
result in injury, harm, or improper operating results.
Failure to observe this information can result in injury or equipment damage.
© 2018 Schneider Electric. All Rights Reserved.
2 EIO0000001909 03/2018

Table of Contents
Safety Information. 7
About the Book . 9

Chapter 1 About the Modicon LMC078 Motion Controller 15
About the Modicon LMC078 Motion Controller 16
Distributed I/O Architecture . 18

Chapter 2 How to Configure the Controller 19
How to Configure the Controller . 19

Chapter 3 Libraries . 23
Libraries. 23

Chapter 4 Supported Standard Data Types 25
Supported Standard Data Types . 26
Parameter Types . 27

Chapter 5 Memory Mapping . 29
Controller Memory Organization . 30
RAM Memory Organization . 31
Flash Memory Organization . 33
USB Memory Key . 34

Chapter 6 Tasks . 35
Maximum Number of Tasks. 36
Task Configuration Screen . 37
Task Types . 39
Motion Task . 42
System and Task Watchdogs . 45
Task Priorities . 46
Default Task Configuration . 49

Chapter 7 Controller States and Behaviors 51
7.1 Controller State Diagram . 52

Controller State Diagram . 52
7.2 Controller States Description. 56

Controller States Description. 56
7.3 State Transitions and System Events . 60

Controller States and Output Behavior . 61
Commanding State Transitions . 64
Error Detection, Types, and Management. 69
Remanent Variables . 70
EIO0000001909 03/2018 3

Chapter 8 Controller Device Editor . 73
Controller Parameters . 74
Configuration Parameters . 76
Controller Selection . 86
PLC Settings . 88

Chapter 9 Embedded Inputs and Outputs Configuration 91
Embedded I/O Configuration . 92
Master Encoder Input Configuration . 100

Chapter 10 Communication Modules . 107
10.1 PROFIBUS DP Slave Module Configuration . 108

Add a PROFIBUS DP Slave Module . 109
PROFIBUS DP Slave Module Configuration . 111
Acyclic Data Exchange . 116

10.2 EtherNet/IP Adapter Configuration. 119
EtherNet/IP Adapter Configuration. 120
Cyclic Data Exchange . 124
Acyclic Data Exchange . 125

10.3 Ethernet/IP Scanner Configuration . 130
Presentation . 131
Supported Devices. 132
EtherNet/IP Scanner Configuration . 134
EtherNet/IP Scanner I/O Mapping . 136
EtherNet/IP Scanner Status and Diagnostics 137
Target Device Declaration . 139
Target Settings. 141
Connection Configuration. 143
Device Replacement with User Parameters . 159
EtherNet/IP I/O Mapping . 163

Chapter 11 Ethernet Configuration . 165
11.1 Ethernet Services. 166

Presentation . 167
IP Address Configuration . 169
Modbus TCP Client/Server . 174
FTP Server. 176
FTP Client . 178
LMC078 Motion Controller as an IOScanner Slave Device on Modbus
TCP . 179
4 EIO0000001909 03/2018

11.2 Firewall Configuration . 184
Introduction . 185
Firewall Behavior . 187
Firewall Script Commands. 188
Script Files. 192

Chapter 12 CANopen Configuration . 193
CANopen Interface Configuration . 194
CANopen Master Configuration. 195
CANopen Slave Configuration. 197

Chapter 13 Sercos Configuration . 199
Overview of the Sercos Standard . 200
Sercos Interface Configuration . 203
Sercos Devices . 208
Device Addressing Editor . 209
Lexium LXM32S Drive Configuration . 213
TM5NS31 Sercos Interface Module . 216
Sercos Error Codes . 217

Chapter 14 Serial Line Configuration . 221
Serial Line Configuration . 222
ASCII Manager . 224
SoMachine Network Manager . 226
Modbus Serial IOScanner . 227
Adding a Device on the Modbus Serial IOScanner 229
Modbus Manager. 236
Adding a Modem to a Manager . 240

Chapter 15 Connecting a Modicon LMC078 Motion Controller to a PC 241
Connecting the Controller to a PC. 241

Chapter 16 Firmware Update . 245
Updating Modicon LMC078 Motion Controller Firmware. 245

Appendices . 249
Appendix A How to Change the IP Address of the Controller 251

changeIPAddress: Change the IP address of the controller 251
Appendix B Diagnostic Messages . 255

Message Logger . 256
Diagnostic Messages . 262
EIO0000001909 03/2018 5

Appendix C LMC078 Sercos3 Library . 271
C.1 Data Types. 272

ST_SercosConfiguration Data Type. 273
ST_SercosConfigurationDevice Data Type . 274
ET_Sercos3CmdType Data Type . 276
ET_Sercos3IDNType Data Type . 277

C.2 Sercos Functions . 278
FC_SercosGetConfiguration Function . 279
FC_SercosReadServiceData Function . 280
FC_SercosReadServiceDataByTopAddr Function 283
FC_SercosScanConfiguration Function . 285
FC_SercosWriteServiceData Function. 287
FC_SercosWriteServiceDataByTopAddr Function. 289

C.3 Asynchronous Sercos Function Blocks . 291
FB_SercosReadServiceDataAsync : Read Data Asynchronously via
theSercos Interface . 292
FB_SercosWriteServiceDataAsync: Write Data Asynchronously via
theSercos Interface . 294
FB_SercosProcedureCommandAsync: Send Commands Asynchro-
nously via the Sercos interface . 296

Appendix D Functions to Get/Set Serial Line Configuration in User
Program . 299
GetSerialConf: Get the Serial Line Configuration 300
SetSerialConf: Change the Serial Line Configuration 301
SERIAL_CONF: Structure of the Serial Line Configuration Data Type 303

Appendix E Controller Performance . 305
Processing Performance . 305

Glossary . 307
Index . 317
6 EIO0000001909 03/2018

Safety Information
Important Information

NOTICE
Read these instructions carefully, and look at the equipment to become familiar with the device
before trying to install, operate, service, or maintain it. The following special messages may appear
throughout this documentation or on the equipment to warn of potential hazards or to call attention
to information that clarifies or simplifies a procedure.
EIO0000001909 03/2018 7

PLEASE NOTE
Electrical equipment should be installed, operated, serviced, and maintained only by qualified
personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of
the use of this material.
A qualified person is one who has skills and knowledge related to the construction and operation
of electrical equipment and its installation, and has received safety training to recognize and avoid
the hazards involved.
8 EIO0000001909 03/2018

About the Book
At a Glance

Document Scope
The purpose of this document is to help you to program and operate your Modicon LMC078 Motion
Controller.
NOTE: Read and understand this document and all related documents (see page 9) before
installing, operating, maintaining, or decommissioning your Modicon LMC078 Motion Controller.
The Modicon LMC078 Motion Controller users should read through the entire document to
understand all features.
NOTE: For the purposes of this document, real-time is defined as processing that is capable of
updating information at the same rate as it is receiving data.

Validity Note
This document has been updated for the release of TM3TI4D Add-on for SoMachine V4.3.

Related Documents

Title of Documentation Reference Number
SoMachine Programming Guide EIO0000000067 (ENG)

EIO0000000069 (FRE)
EIO0000000068 (GER)
EIO0000000071 (SPA)
EIO0000000070 (ITA)
EIO0000000072 (CHS)

Modicon LMC078 Motion Controller Hardware Guide EIO0000001925 (ENG)
EIO0000001926 (FRE)
EIO0000001927 (GER)
EIO0000001928 (SPA)
EIO0000001929 (ITA)
EIO0000001930 (CHS)
EIO0000001932 (TUR)
EIO0000001909 03/2018 9

http://www.schneider-electric.com/en/download/document/EIO0000000067/
http://www.schneider-electric.com/en/download/document/EIO0000000069/
http://www.schneider-electric.com/en/download/document/EIO0000000068/
http://www.schneider-electric.com/en/download/document/EIO0000000071/
http://www.schneider-electric.com/en/download/document/EIO0000000070/
http://www.schneider-electric.com/en/download/document/EIO0000000072/
http://www.schneider-electric.com/en/download/document/EIO0000001925/
http://www.schneider-electric.com/en/download/document/EIO0000001926/
http://www.schneider-electric.com/en/download/document/EIO0000001927/
http://www.schneider-electric.com/en/download/document/EIO0000001928/
http://www.schneider-electric.com/en/download/document/EIO0000001929/
http://www.schneider-electric.com/en/download/document/EIO0000001930/
http://www.schneider-electric.com/en/download/document/EIO0000001932/

Modicon LMC078 Motion Controller System Functions and Variables
PLCSystem Library Guide

EIO0000001917 (ENG)
EIO0000001918 (FRE)
EIO0000001919 (GER)
EIO0000001920 (SPA)
EIO0000001921 (ITA)
EIO0000001922 (CHS)
EIO0000001924 (TUR)

SoMachine - Motion Control Library Guide EIO0000002221 (ENG)
EIO0000002222 (GER)
EIO0000002223 (CHS)

Modicon TM5 / TM7 Flexible System - System Planning and
Installation Guide

EIO0000000426 (ENG)
EIO0000000427 (FRE)
EIO0000000428 (GER)
EIO0000000429 (SPA)
EIO0000000430 (ITA)
EIO0000000431 (CHS)

Modicon TM5 Expansion Modules Configuration Programming
Guide

EIO0000000420 (ENG)
EIO0000000421 (FRE)
EIO0000000422 (GER)
EIO0000000423 (SPA)
EIO0000000424 (ITA)
EIO0000000425 (CHS)

Modicon TM7 Expansion Blocks Configuration Programming Guide EIO0000000880 (ENG)
EIO0000000881 (FRE)
EIO0000000882 (GER)
EIO0000000883 (SPA)
EIO0000000884 (ITA)
EIO0000000885 (CHS)

SoMachine Modbus and ASCII Read/Write Functions
PLCCommunication Library Guide

EIO0000000361 (ENG)
EIO0000000362 (FRE)
EIO0000000363 (GER)
EIO0000000364 (SPA)
EIO0000000365 (ITA)
EIO0000000366 (CHS)

SoMachine Modem Functions Modem Library Guide EIO0000000552 (ENG)
EIO0000000491 (FRE)
EIO0000000492 (GER)
EIO0000000493 (SPA)
EIO0000000494 (ITA)
EIO0000000495 (CHS)

Title of Documentation Reference Number
10 EIO0000001909 03/2018

http://www.schneider-electric.com/en/download/document/EIO0000001917/
http://www.schneider-electric.com/en/download/document/EIO0000001918/
http://www.schneider-electric.com/en/download/document/EIO0000001919/
http://www.schneider-electric.com/en/download/document/EIO0000001920/
http://www.schneider-electric.com/en/download/document/EIO0000001921/
http://www.schneider-electric.com/en/download/document/EIO0000001922/
http://www.schneider-electric.com/en/download/document/EIO0000001924/
http://www.schneider-electric.com/en/download/document/EIO0000002221/
http://www.schneider-electric.com/en/download/document/EIO0000002222/
http://www.schneider-electric.com/en/download/document/EIO0000002223/
http://www.schneider-electric.com/en/download/document/EIO0000000426/
http://www.schneider-electric.com/en/download/document/EIO0000000427/
http://www.schneider-electric.com/en/download/document/EIO0000000428/
http://www.schneider-electric.com/en/download/document/EIO0000000429/
http://www.schneider-electric.com/en/download/document/EIO0000000430/
http://www.schneider-electric.com/en/download/document/EIO0000000431/
http://www.schneider-electric.com/en/download/document/EIO0000000420/
http://www.schneider-electric.com/en/download/document/EIO0000000421/
http://www.schneider-electric.com/en/download/document/EIO0000000422/
http://www.schneider-electric.com/en/download/document/EIO0000000423/
http://www.schneider-electric.com/en/download/document/EIO0000000424/
http://www.schneider-electric.com/en/download/document/EIO0000000425/
http://www.schneider-electric.com/en/download/document/EIO0000000880/
http://www.schneider-electric.com/en/download/document/EIO0000000881/
http://www.schneider-electric.com/en/download/document/EIO0000000882/
http://www.schneider-electric.com/en/download/document/EIO0000000883/
http://www.schneider-electric.com/en/download/document/EIO0000000884/
http://www.schneider-electric.com/en/download/document/EIO0000000885/
http://www.schneider-electric.com/en/download/document/EIO0000000361/
http://www.schneider-electric.com/en/download/document/EIO0000000362/
http://www.schneider-electric.com/en/download/document/EIO0000000363/
http://www.schneider-electric.com/en/download/document/EIO0000000364/
http://www.schneider-electric.com/en/download/document/EIO0000000365/
http://www.schneider-electric.com/en/download/document/EIO0000000366/
http://www.schneider-electric.com/en/download/document/EIO0000000552/
http://www.schneider-electric.com/en/download/document/EIO0000000491/
http://www.schneider-electric.com/en/download/document/EIO0000000492/
http://www.schneider-electric.com/en/download/document/EIO0000000493/
http://www.schneider-electric.com/en/download/document/EIO0000000494/
http://www.schneider-electric.com/en/download/document/EIO0000000495/

You can download these technical publications and other technical information from our website
at https://www.schneider-electric.com/en/download

Product Related Information

1 For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the
Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest
edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of
Adjustable-Speed Drive Systems" or their equivalent governing your particular location.

SoMachine Controller Assistant User Guide EIO0000001671 (ENG)
EIO0000001672 (FRE)
EIO0000001673 (GER)
EIO0000001675 (SPA)
EIO0000001674 (ITA)
EIO0000001676 (CHS)

Title of Documentation Reference Number

WARNING
LOSS OF CONTROL
 The designer of any control scheme must consider the potential failure modes of control paths

and, for certain critical control functions, provide a means to achieve a safe state during and
after a path failure. Examples of critical control functions are emergency stop and overtravel
stop, power outage and restart.

 Separate or redundant control paths must be provided for critical control functions.
 System control paths may include communication links. Consideration must be given to the

implications of unanticipated transmission delays or failures of the link.
 Observe all accident prevention regulations and local safety guidelines.1
 Each implementation of this equipment must be individually and thoroughly tested for proper

operation before being placed into service.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

WARNING
UNINTENDED EQUIPMENT OPERATION
 Only use software approved by Schneider Electric for use with this equipment.
 Update your application program every time you change the physical hardware configuration.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
EIO0000001909 03/2018 11

http://www.schneider-electric.com/en/download/document/EIO0000001671/
http://www.schneider-electric.com/en/download/document/EIO0000001672/
http://www.schneider-electric.com/en/download/document/EIO0000001673/
http://www.schneider-electric.com/en/download/document/EIO0000001675/
http://www.schneider-electric.com/en/download/document/EIO0000001674/
http://www.schneider-electric.com/en/download/document/EIO0000001676/

Terminology Derived from Standards
The technical terms, terminology, symbols and the corresponding descriptions in this manual, or
that appear in or on the products themselves, are generally derived from the terms or definitions
of international standards.
In the area of functional safety systems, drives and general automation, this may include, but is not
limited to, terms such as safety, safety function, safe state, fault, fault reset, malfunction, failure,
error, error message, dangerous, etc.
Among others, these standards include:

Standard Description
EN 61131-2:2007 Programmable controllers, part 2: Equipment requirements and tests.
ISO 13849-1:2008 Safety of machinery: Safety related parts of control systems.

General principles for design.
EN 61496-1:2013 Safety of machinery: Electro-sensitive protective equipment.

Part 1: General requirements and tests.
ISO 12100:2010 Safety of machinery - General principles for design - Risk assessment and risk

reduction
EN 60204-1:2006 Safety of machinery - Electrical equipment of machines - Part 1: General

requirements
EN 1088:2008
ISO 14119:2013

Safety of machinery - Interlocking devices associated with guards - Principles
for design and selection

ISO 13850:2006 Safety of machinery - Emergency stop - Principles for design
EN/IEC 62061:2005 Safety of machinery - Functional safety of safety-related electrical, electronic,

and electronic programmable control systems
IEC 61508-1:2010 Functional safety of electrical/electronic/programmable electronic safety-

related systems: General requirements.
IEC 61508-2:2010 Functional safety of electrical/electronic/programmable electronic safety-

related systems: Requirements for electrical/electronic/programmable
electronic safety-related systems.

IEC 61508-3:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems: Software requirements.

IEC 61784-3:2008 Digital data communication for measurement and control: Functional safety
field buses.

2006/42/EC Machinery Directive
2014/30/EU Electromagnetic Compatibility Directive
2014/35/EU Low Voltage Directive
12 EIO0000001909 03/2018

In addition, terms used in the present document may tangentially be used as they are derived from
other standards such as:

Finally, the term zone of operation may be used in conjunction with the description of specific
hazards, and is defined as it is for a hazard zone or danger zone in the Machinery Directive
(2006/42/EC) and ISO 12100:2010.
NOTE: The aforementioned standards may or may not apply to the specific products cited in the
present documentation. For more information concerning the individual standards applicable to the
products described herein, see the characteristics tables for those product references.

Standard Description
IEC 60034 series Rotating electrical machines
IEC 61800 series Adjustable speed electrical power drive systems
IEC 61158 series Digital data communications for measurement and control – Fieldbus for use in

industrial control systems
EIO0000001909 03/2018 13

14 EIO0000001909 03/2018

Modicon LMC078
About the Modicon LMC078 Motion Controller
EIO0000001909 03/2018
About the Modicon LMC078 Motion Controller

Chapter 1
About the Modicon LMC078 Motion Controller

Introduction
This chapter provides information about the Modicon LMC078 Motion Controller and devices that
SoMachine can configure and program.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
About the Modicon LMC078 Motion Controller 16
Distributed I/O Architecture 18
EIO0000001909 03/2018 15

About the Modicon LMC078 Motion Controller
About the Modicon LMC078 Motion Controller

Overview
The Schneider Electric Modicon LMC078 Motion Controller (LMC078CECS20T) is a controller with
various powerful features. It can control a wide range of applications.
The Modicon LMC078 Motion Controller centrally implements the controller and motion functions.
A Modicon LMC078 Motion Controller synchronizes, coordinates, and creates the motion functions
of a machine for a maximum of 24 axes (synchronized in as little as 4 ms).
This controller is the optimized solution for axis positioning using the SoMachine software platform,
which includes embedded automation functions and an ergonomic interface for axis configuration.
Combined with Lexium 32S servo drives, this lets you design and commission your applications.
For more information about Lexium 32S servo drives, refer to the LXM32S Product Manual.
The software configuration is described in the SoMachine Programming Guide and in the LMC078
Motion Controller Programming Guide (see page 9).

Key Features
The SoMachine software supports the following IEC61131-3 programming languages for use with
these controllers:
 IL: Instruction List
 LD: Ladder Diagram
 ST: Structured Text
 FBD: Function Block Diagram
 SFC: Sequential Function Chart
SoMachine software can also be used to program these controllers using CFC (Continuous
Function Chart) language.
The LMC078 Motion Controller supports the following fieldbusses:
 With embedded communication interfaces:
 CANopen Master/Slave
 Sercos III
 Ethernet TCP/IP
 Serial Line

 With optional communication modules:
 EtherNet/IP Adapter/Scanner
 PROFIBUS DP Slave

The LMC078 Motion Controller supports the following I/O types:
 Master encoder input
 Embedded I/Os
 Digital I/Os
 Advanced digital inputs (touchprobe and interrupt inputs)

 Distributed I/Os on CANopen and Sercos fieldbusses (TM5/TM7 modules)
16 EIO0000001909 03/2018

About the Modicon LMC078 Motion Controller
Performance
The LMC078 Motion Controller has the following performance:
 Up to 8 axes with a minimum synchronization time of 1 ms
 Up to 16 axes with a minimum synchronization time of 2 ms
 Up to 24 axes, with a minimum synchronization time of 4 ms (available with product hardware

version greater than or equal to RS02).
 Minimum task cycle time (not for motion): 250 µs
To display the hardware version, either:
1. Display the configuration parameters (see page 76) of the controller.
2. Verify that the first 2 characters of the HW_Code parameter are “0” and “2” respectively.

or:
1. Consult the LC Display of the controller.
2. Use the menu buttons to display the HwCode menu item.
3. Verify that the first 2 characters of the HwCode parameter are “0” and “2” respectively.

Example HW_Code or HwCode parameter for hardware version RS02:

0224013000000000
EIO0000001909 03/2018 17

About the Modicon LMC078 Motion Controller
Distributed I/O Architecture

Introduction
The LMC078 Motion Controller offers the possibility of creating distributed I/O islands via:
 Sercos fieldbus with TM5 fieldbus interface (TM5NS31)
 CANopen fieldbus with TM5 fieldbus interface (TM5NC31) or TM7 fieldbus interface

(TM7NCOM•••)

LMC078 Motion Controller Distributed Architecture
Optimized remote configuration and flexibility are provided by the association of:
 LMC078 Motion Controller
 TM5 and/or TM7 fieldbus interface
 TM5 and/or TM7 expansion modules
Application requirements determine the architecture of your LMC078 Motion Controller
configuration.
This illustration presents a distributed configuration on Sercos and CANopen fieldbusses:

(1) Sercos fieldbus
(2) CANopen fieldbus
(3) TM5/TM7 expansion bus

For more information on TM5 and TM7 expansion bus, refer to TM5 / TM7 Distributed I/Os
Architecture (see Modicon TM5 / TM7 Flexible System, System Planning and Installation Guide).
18 EIO0000001909 03/2018

Modicon LMC078
How to Configure the Controller
EIO0000001909 03/2018
How to Configure the Controller

Chapter 2
How to Configure the Controller

How to Configure the Controller

Introduction
First, create a new project or open an existing project in the SoMachine software.
Refer to the SoMachine Programming Guide for information on how to:
 add a controller to your project
 replace an existing controller
 convert a controller to a different but compatible device
EIO0000001909 03/2018 19

How to Configure the Controller
Devices Tree
The Devices tree presents a structured view of the current hardware configuration. When you add
a controller to your project, a number of nodes are added to the Devices tree, depending on the
functions the controller provides.

Item Use to Configure...
Sercos Embedded Sercos III interface.
DIG_DigitalIn Embedded digital inputs of the motion controller.
DQG_DigitalOut Embedded digital outputs of the motion controller.
20 EIO0000001909 03/2018

How to Configure the Controller
Applications Tree
The Applications tree allows you to manage project-specific applications as well as global
applications, POUs, and tasks.

Tools Tree
The Tools tree allows you to:
 Configure the HMI part of your project.
 Manage libraries.
 Access to the Device addressing tool (see page 209).
 Access to the Message logger tool (see page 256).
 Add CNC programs.

Ethernet Embedded Ethernet and serial line communications interfaces.
Serial Line
SoftMotion General Axis Pool SoftMotion devices (Virtual axis configuration).

Item Use to Configure...
EIO0000001909 03/2018 21

How to Configure the Controller
22 EIO0000001909 03/2018

Modicon LMC078
Libraries
EIO0000001909 03/2018
Libraries

Chapter 3
Libraries

Libraries

Introduction
Libraries provide functions, function blocks, data types, and global variables that can be used to
develop your project.
The Library Manager of SoMachine provides information about the libraries included in your project
and allows you to install new ones. For more information on the Library Manager, refer to the
SoMachine Programming Guide.

Modicon LMC078 Motion Controller
When you select a Modicon LMC078 Motion Controller for your application, SoMachine loads the
following libraries:

Library name Description
SystemConfiguration The content of this library is only used by SoMachine to create the

driver function blocks instances.
LMC078 PLCSystem (see Modicon
LMC078 Motion Controller, System
Functions and Variables,
PLCSystem Library Guide)

Contains functions and variables to get information and send
commands to the controller system.

SystemConfigurationItf Contains interfaces which manage the different properties of the
system objects (controller, drive, and power supply).

IoStandard CmpIoMgr configuration types, ConfigAccess, parameters and help
functions: manages the I/Os in the application.

Standard Contains functions and function blocks which are required matching
IEC61131-3 as standard POUs for an IEC programming system. Link
the standard POUs to the project (standard.library).

SM3_Basic Contains functions for SoftMotion basic management, for more
information refer to the SoMachine online help, chapter CoDeSys
Libraries / SoftMotion Libraries.

SM3_CNC Contains functions for SoftMotion CNC management, for more
information refer to the SoMachine online help, chapter CoDeSys
Libraries / SoftMotion Libraries.

LMC078 Sercos3 (see page 199) Contains functions and variables to read/write data and send
commands via the Sercos interface.
EIO0000001909 03/2018 23

Libraries
Util Contains functions for analog monitors, BCD conversions, bit/byte
functions, controller data types, function manipulators, mathematical
symbols, and signals.

CAA Device Diagnosis This library offers functions and interfaces for the implementation of a
simple but high-performance diagnostic functionality. The library
defines methods which provide access to the required information for
each device and each fieldbus.

CDS_MemMan Memory manager library.

Library name Description
24 EIO0000001909 03/2018

Modicon LMC078
Supported Standard Data Types
EIO0000001909 03/2018
Supported Standard Data Types

Chapter 4
Supported Standard Data Types

Introduction
This chapter provides the different IEC Data types supported by the Controller.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Supported Standard Data Types 26
Parameter Types 27
EIO0000001909 03/2018 25

Supported Standard Data Types
Supported Standard Data Types

Supported Standard Data Types
The controller supports the following IEC data types:

For more information on ARRAY, LTIME, DATE, TIME, DATE_AND_TIME, and TIME_OF_DAY, refer
to the SoMachine Programming Guide.

Data Type Lower Limit Upper Limit Information Content
BOOL FALSE TRUE 1 Bit
BYTE 0 255 8 Bit
WORD 0 65,535 16 Bit
DWORD 0 4,294,967,295 32 Bit
LWORD 0 264-1 64 Bit

SINT -128 127 8 Bit
USINT 0 255 8 Bit
INT -32,768 32,767 16 Bit
UINT 0 65,535 16 Bit
DINT -2,147,483,648 2,147,483,647 32 Bit
UDINT 0 4,294,967,295 32 Bit
LINT -263 263-1 64 Bit

ULINT 0 264-1 64 Bit

REAL 1.175494351e-38 3.402823466e+38 32 Bit
STRING 1 character 255 characters 1 character = 1 byte
WSTRING 1 character 255 characters 1 character = 1 word
TIME - - 32 Bit
26 EIO0000001909 03/2018

Supported Standard Data Types
Parameter Types

Parameter Types
This table describes the controller parameter types:

Type (1) Online
editable

Offline
editable

Font color
(2)

Properties Read value Write value

ER Yes Yes Black Input with user initialization.
Transfer only after reset.

Quick memory
access.

Not used.

ED Yes Yes Black Input with user initialization.
Transfer directly after the
change.

Quick memory
access.

Quick memory
access.

ED Yes No Gray Input with automatic
initialization to default value.
Transfer directly after the
change.
Can only be changed online
by SoMachine.

Quick memory
access.

Quick memory
access.

EF Yes Yes Black Input with user initialization.
Transfer directly after the
change.

Quick memory
access.

Functional access
(internal calculation
required).

EF Yes No Gray Input with automatic
initialization.
Transfer directly after the
change.
Can only be changed online
by SoMachine.

Quick memory
access.

Functional access
(internal calculation
required).

ES Yes No Gray Input.
Transfer directly after the
change.
Can only be changed online
by SoMachine.

Quick memory
access.

Communication via
Sercos.
Delay of the caller
(typically
10...100 ms).

AK No No Gray Output.
Constant value.

Quick memory
access.

Not possible.

AD No No Gray Output.
Dynamic value.

Quick memory
access.

Not possible.
EIO0000001909 03/2018 27

Supported Standard Data Types
(1) The parameter type is displayed in the Description column of the controller Configuration
screens (controller parameters (see page 76), embedded I/O parameters (see page 92), encoder
parameters (see page 100), Sercos parameters (see page 203)).
(2) The font color is the color of the parameter displayed in the Configuration screens. If the
parameter is displayed in a black font, it is editable offline.

Sercos Reset Parameter
Sercos reset parameters are not accepted immediately following the input but only after the next
Sercos run-up (Phase 0 -> Phase 4).
This table lists the Sercos reset parameters of the controller:

AF No No Gray Output.
Dynamic value.

Functional
access (internal
calculation
required).

Not possible.

AS No No Gray Output.
Dynamic value.

Communication
via Sercos.
Delay of the caller
(typically
10...100 ms).

Not possible.

Type (1) Online
editable

Offline
editable

Font color
(2)

Properties Read value Write value

Parameter Group Acceptance Parameter type
WorkingMode Identification Phase 2 -> Phase 3 EF
IdentificationMode Identification Phase 2 -> Phase 3 EF
ConfiguredTopologyAddress Identification Phase 2 -> Phase 3 EF
ConfiguredApplicationType Identification Phase 2 -> Phase 3 EF
ConfiguredSercosAddress Identification Phase 2 -> Phase 3 EF
ConfiguredSerialNumber Identification Phase 2 -> Phase 3 EF
28 EIO0000001909 03/2018

Modicon LMC078
Memory Mapping
EIO0000001909 03/2018
Memory Mapping

Chapter 5
Memory Mapping

Introduction
This chapter describes the memory maps and sizes of the different memory areas in the Modicon
LMC078 Motion Controller. These memory areas are used to store user program logic, data and
the programming libraries.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Controller Memory Organization 30
RAM Memory Organization 31
Flash Memory Organization 33
USB Memory Key 34
EIO0000001909 03/2018 29

Memory Mapping
Controller Memory Organization

Introduction
The controller memory is composed of 3 types of physical memory:
 The SD card (see page 33) memory contains files (application, configuration files, and OS).
 The RAM (Random Access Memory) (see page 31) is used for application and OS execution.
 The NVRAM contains retained and persistent retained variables.

Files Transfers in Memory

NOTE: Files on the SD card can be read, written, or erased, depending on the controller state. The
modification of files in the SD card does not affect a running application. Any changes to files in the
SD card are taken into account at the next reboot.

Item Controller state File transfer events Connection Description
1 – Initiated automatically

at power-on and
reboot

Internal File transfer from SD card to RAM.
The content of the RAM is overwritten.

2 All states Initiated by user Ethernet or USB
programming
port

Files can be transferred via:
 FTP server (see page 176)
 SoMachine
30 EIO0000001909 03/2018

Memory Mapping
RAM Memory Organization

Introduction
This section describes the RAM (Random Access Memory) size for different areas of the Modicon
LMC078 Motion Controller.

Memory Mapping
The RAM (512 Mbytes) is composed of two areas:
 OS memory
 Dedicated application memory
The NVRAM (128 Kbytes) is composed of two areas:
 Retained variables
 Persistent retained variables
The NVRAM containing persistent and retained variables is preserved by an internal battery during
power outages or when the controller is powered off.
Declaring variables as Persistent increases the cycle time of the controller by approximately
0.2 ms per 1000 variables.
Persistent variables are saved in NVRAM and are preserved by an internal battery during power
outages or when the controller is powered off.
Configure the minimum number of persistent variables required for your application to help avoid
degradation of controller performance.
This table describes the dedicated application memory:

NOTE: The defined sizes are by default allocated during the boot up phase. Dynamic memory
allocation is also possible.

Area Element Size (byte)
System area Input (%I) Minimum 65536

Output (%Q) Minimum 65536
Memory (%M) Minimum 65536

User area Symbols Minimum 1048576
Variables
Application
Libraries
EIO0000001909 03/2018 31

Memory Mapping
This table describes the NVRAM memory:

NOTE: To verify the memory usage of each area, right-click on the controller node in the Devices
tree and click Device Memory Info.

System Variables
For more information on system variables, refer to the LMC078 PLCSystem Library Guide.

Memory Addressing
This table describes the memory addressing for the address sizes Double word (%MD), Word
(%MW), Byte (%MB), and Bit (%MX):

Example of overlap of memory ranges:
%MD0 contains %MB0...%MB3, %MW0 contains %MB0 and %MB1, %MW1 contains %MB2 and
%MB3.

Area Size (byte)
Retained variables 1000...84501
Retained and retained persistent variables 1000...84501

Double words Words Bytes Bits
%MD0 %MW0 %MB0 %MX0.7...%MX0.0

%MB1 %MX1.7...%MX1.0
%MW1 %MB2 %MX2.7...%MX2.0

%MB3 %MX3.7...%MX3.0
%MD1 %MW2 %MB4 %MX4.7...%MX4.0

%MB5 %MX5.7...%MX5.0
%MW3 %MB6 %MX6.7...%MX6.0

%MB7 %MX7.7...%MX7.0
%MD2 %MW4 %MB8 %MX8.7...%MX8.0

... ...
...

... ...
32 EIO0000001909 03/2018

Memory Mapping
Flash Memory Organization

Introduction
The SD card contains the file system used by the controller.
You can also use the SD card as a mass storage media for your files.

File Organization
This table presents the file organization of the SD card:

NOTE: You can use the functions of the CAA File library to access to the files of the SD card. For
more information on the function blocks of this library, refer to the CoDeSys libraries topic in the
SoMachine online help.

Directory File Content
\ Application.app

Application.crc
Application

\ESystem\ bootc4.sys Boot loader
sysc3.sys VxWorks kernel and firmware
sysc3.cfg Lzs2 component configuration

\ESystem\FBUSFW\ NETX100-BSL.bin NetX boot loader
cifXrcX.nxf NetX basic firmware
DPS_XC0.nxo NetX firmware for PROFIBUS DP slave
DPS_XC2.nxo
nx100eis.nxo NetX firmware for EtherNet/IP adapter
nx100eim.nxo NetX firmware for EtherNet/IP scanner
nx100ecs.nxo NetX firmware for EtherCAT slave

\ESystem\
FirmwareDatabase\D3\

TM5NS31_V245.fw Firmware of the TM5NS31 Sercos interface
module

\ESystem\Languages\ english.xml LCD language
\romfs\ Prsnlty.ini EtherBrick configuration
EIO0000001909 03/2018 33

Memory Mapping
USB Memory Key

Introduction
The USB memory key is used as a mass storage media for your files. It can be accessed via the
FTP or the application.
NOTE: You can use the functions of the CAA File library to access to the USB memory key. For
more information on the function blocks of this library, refer to the CoDeSys libraries topic in the
SoMachine online help.
34 EIO0000001909 03/2018

Modicon LMC078
Tasks
EIO0000001909 03/2018
Tasks

Chapter 6
Tasks

Introduction
The Task Configuration node in the Applications tree allows you to define one or more tasks to
control the execution of your application program.
The task types available are:
 Cyclic
 Event
 External event
 Status

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Maximum Number of Tasks 36
Task Configuration Screen 37
Task Types 39
Motion Task 42
System and Task Watchdogs 45
Task Priorities 46
Default Task Configuration 49
EIO0000001909 03/2018 35

Tasks
Maximum Number of Tasks

Maximum Number of Tasks
The Modicon LMC078 Motion Controller supports up to 1000 application program tasks.
36 EIO0000001909 03/2018

Tasks
Task Configuration Screen

Screen Description
This screen allows you to configure the tasks. Double-click the task that you want to configure in
the Applications tree to access this screen.
Each configuration task has its own parameters that are independent of the other tasks.
The Configuration window is composed of 4 parts:
EIO0000001909 03/2018 37

Tasks
The table describes the fields of the Configuration screen:

Field Name Definition
Priority Configure the priority of each task with a number from 0 to 31 (0 is the highest priority, 31 is

the lowest).
Only one task at a time can be running. The priority determines when the task will run:
 a higher priority task will pre-empt a lower priority task
 tasks with same priority will run in turn (2 ms time-slice)

NOTE: Do not assign tasks with the same priority. If there are yet other tasks that attempt
to pre-empt tasks with the same priority, the result could be indeterminate and unpredicable.
For important safety information, refer to Task Priorities (see page 46).

Type These task types are available:
 Cyclic
 Event (see page 40)
 External (see page 40)
 Status (see page 40)

Watchdog To configure the watchdog (see page 45), define these 2 parameters:
 Time: enter the timeout before watchdog execution.
 Sensitivity: defines the number of expirations of the watchdog timer before the controller

stops program execution and enters a HALT state.
POUs The list of POUs (see SoMachine, Programming Guide) (Programming Organization Units)

controlled by the task is defined in the task configuration window:
 To add a POU linked to the task, use the command Add Call and select the POU in the

Input Assistant editor.
 To remove a POU from the list, use the command Remove Call.
 To replace the currently selected POU of the list by another one, use the command

Change Call.
 POUs are executed in the order shown in the list. To move the POUs in the list, select a

POU and use the command Move Up or Move Down.

NOTE: You can create as many POUs as you want. An application with several small
POUs, as opposed to one large POU, can improve the refresh time of the variables in online
mode.
38 EIO0000001909 03/2018

Tasks
Task Types

Introduction
The following section describes the various task types available for your program, along with a
description of the task type characteristics.

Cyclic Task
A Cyclic task is assigned a fixed cycle time using the Interval setting in the Type section of
Configuration subtab for that task. Each Cyclic task type executes as follows:

1. Read inputs: The physical input states are written to the %I input memory variables and other
system operations are executed.

2. Task processing: The user code (POU, and so on) defined in the task is processed. The %Q
output memory variables are updated according to your application program instructions. The
output values of distributed I/O modules are not yet written to the physical outputs during this
operation. The embedded output values are immediately written to the physical outputs.

3. Write outputs of distributed I/O modules: The %Q output memory variables are modified with any
output forcing that has been defined; however, the writing of the physical outputs depends upon
the type of output and instructions used.
For more information on defining the bus cycle task, refer to the SoMachine Programming Guide
and Modicon LMC078 Motion Controller Settings (see page 88).

4. Remaining Interval time: The controller firmware carries out system processing and any other
lower priority tasks.

NOTE: If you define too short a period for a cyclic task, it will repeat without executing other lower
priority tasks or any system processing. This affects the execution of all tasks.
NOTE: Get and set the interval of a Cyclic Task by application using the GetCurrentTaskCycle and
SetCurrentTaskCycle function. (Refer to Toolbox Advance Library Guide for further details.)
The minimum cycle time for cyclic task is 250 µs. The configured cycle time has to be a multiple of
250 µs (for example, 500 µs, 750 µs, 1 ms, and so on).
EIO0000001909 03/2018 39

Tasks
Event Task
This type of task is event-driven and is initiated by a program variable. It starts at the rising edge
of the boolean variable associated to the trigger event unless pre-empted by a higher priority task.
In that case, the Event task will start as dictated by the task priority assignments.
For example, if you have defined a variable called my_Var and would like to assign it to an Event,
proceed as follows:

NOTE: The maximum frequency admissible for the event triggering an Event task is 100 Hz.

External Event Task
This type of task is event-driven and is initiated by the detection of a hardware or hardware-related
function event. It starts when the event occurs unless pre-empted by a higher priority task. In that
case, the External Event task will start as dictated by the task priority assignments.
For example, an External event task could be associated with a rising edge on an advanced input
(DI8...DI11). To associate the INIRQ1 event to an External event task, select it from the External
event drop-down list on the Configuration tab.
There are up to 6 types of events that can be associated with an External event task:
 INIRQx: rising edge on an advanced input
 RTP_READ: real-time process after real-time data read
 RTP_MENC: real-time process after master encoder
 RTP_LENC: real-time process after logical encoder
 RTP_AXIS: real-time process after computing of RefValues function blocks
 MDT_WRITE_ACCESS: used to trigger the Motion task (write access to MDT (Sercos Master

Data Telegram (see page 200))

Step Action
1 Double-click the TASK in the Applications tree.
2 Select Event from the Type list in the Configuration tab.
3

Click the Input Assistant button to the right of the Event field.
Result: The Input Assistant window appears.

4 Navigate in the tree of the Input Assistant dialog box to find and assign the my_Var variable.
40 EIO0000001909 03/2018

Tasks
Status Task
This type of task is event-driven and is initiated by a program variable. It starts if the boolean
variable associated to the trigger event is TRUE unless pre-empted by a higher priority task. In that
case, the Status task will start as dictated by the task priority assignments.
For example, if you have defined a variable called my_Var and would like to assign it to a Status
task, proceed as follows:

Step Action
1 Double-click the TASK in the Applications tree.
2 Select Status from the Type list in the Configuration tab.
3

Click the Input Assistant button to the right of the Event field.
Result: The Input Assistant window appears.

4 Navigate in the tree of the Input Assistant dialog box to find and assign the my_Var variable.
EIO0000001909 03/2018 41

Tasks
Motion Task

Introduction
This section presents the characteristics of the Motion task and provides information on the
performance possible when using an optimally configured motion system. The Motion task is
created automatically with the External event name of MDT_WRITE_ACCESS. This mechanism
allows a synchronization of the Motion task with the bus cycle of the Sercos bus.
The parameter Priority (0...31) is ignored. The task is executed with the priority of the real-time
process (higher than IEC task priority 0).
The SR_Motion POU is automatically created and attached to the Motion task.
NOTE:
An adequately defined cycle time meets both of the following requirements:
 The program processing defined in your Motion task must have enough time to execute in full.

Test the execution time of your Motion task under all operating conditions to determine this
value.

 The Sercos Cycle Time (see page 203) must be of sufficient duration to allow the physical
exchange of all data between the controller and all of the configured devices.

If you do not configure a sufficient Cycle Time this can result in a system watchdog exception or
even a loss of synchronization for the controlled devices. For example, an insufficient Cycle Time
may result in the detection of the loss of the Sercos master for all controlled devices. In this case,
devices detecting a loss of the Sercos master assume their programmed fallback states. Always
confirm that your Cycle Time is sufficient to allow full execution of the Motion task and a complete
physical exchange of all data before placing your system into service.

WARNING
UNINTENDED EQUIPMENT OPERATION
 Calculate the required minimum cycle time for your task processing and physical data

exchange.
 Define a task (software) watchdog for the Motion task with a watchdog period slightly larger

than the Cycle Time defined for the Sercos interface.
 Thoroughly test your Sercos system under normal and exception state conditions before

placing your system into service.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
42 EIO0000001909 03/2018

Tasks
This picture displays the settings for the Motion task:

NOTE: Do not delete the Motion task or change its Name, Type, or External Event attributes. If you
do so, SoMachine does not detect an error when you build the application, but an error will be
returned by the Motion Library as soon as you attempt to use the application.

Motion Task Programming Requirements
You must use the Motion task to manage every aspect of programming related to the Sercos bus
and its connected motion devices such as drive controllers.
This includes:
 Local inputs used to acquire motion events
 Encoder inputs used to acquire motion events
 Task processing for all motion functions (Motion task POU, and so on)
 Encoder outputs configured to respond to motion events
 Local outputs configured to respond to motion events

WARNING
UNINTENDED EQUIPMENT OPERATION
Use the Motion task to manage all motion-related inputs, outputs, task processing, and Sercos
communications.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
EIO0000001909 03/2018 43

Tasks
Motion Task Performance
The Modicon LMC078 Motion Controller is capable of achieving high performance. The controller
can manage up to:
 8 axes with a minimum synchronization time of 1 ms
 16 axes with a minimum synchronization time of 2 ms
 24 axes with a minimum synchronization time of 4 ms (available with hardware version ≥

RS02). For further information, refer to Performance (see page 17).
The subset of functions that can be used and still allow you to achieve similar performance (with
an efficiently-written application) are:
 Virtual axes
 Relative and absolute positioning
 Speed control
 Cam profiles
 Electronic gearing
 Linear and circular interpolation by using G code
44 EIO0000001909 03/2018

Tasks
System and Task Watchdogs

Introduction
Two types of watchdog functionality are implemented for the Modicon LMC078 Motion Controller:
 System Watchdog: This watchdog is defined in and managed by the controller firmware. This is

not configurable by the user.
 Task Watchdogs: These watchdogs are optional watchdogs that you can define for each task.

These are managed by your application program and are configurable in SoMachine.

System Watchdog
The system watchdog is managed by the controller firmware and is therefore sometimes referred
to as hardware watchdog in the SoMachine online help. When the system watchdog exceeds its
threshold conditions, an error is detected and is displayed on the controller.
If the RTP (Real Time Process) is not triggered during an interval of 100 ms, a system watchdog
is detected. The controller enters the HALT state, a controller reboot is required to get back into
RUNNING mode.
NOTE: The system watchdog is not configurable by the user.
The digital output 7 (DQ_WD) can be configured as watchdog output controlled by the system
watchdog (Watchdog Output Configuration).

Task Watchdogs
SoMachine allows you to configure an optional task watchdog for every task defined in your
application program. (Task watchdogs are sometimes also referred to as software watchdogs or
control timers in the SoMachine online help). When one of your defined task watchdogs reaches
its threshold condition, an application error is detected and the controller enters the HALT state
(Diagnostic messages (see page 262)).
When defining a task watchdog, the following options are available:
 Time: This defines the allowable maximum execution time for a task. When a task takes longer

than this, the controller will report a task watchdog exception.
 Sensitivity: The sensitivity field defines the number of task watchdog exceptions that must occur

before the controller detects an application error.
To access the configuration of a task watchdog, double-click the Task in the Applications tree.
NOTE: For more information on watchdogs, refer to SoMachine Programming Guide.
EIO0000001909 03/2018 45

Tasks
Task Priorities

Task Priority Configuration
You can configure the priority of each task between 0 and 31 (0 is the highest priority, 31 is the
lowest). Each task must have a unique priority. If you assign the same priority to more than one
task, execution for those tasks is indeterminate and unpredictable, which may lead to unintended
consequences.

The IEC priorities (0...31) are mapped to the system priorities (220...251):

The Motion task (attached to the event MDT_WRITE_ACCESS) is created with the system priority
0 triggered by the real time process (system priority 32).

WARNING
UNINTENDED EQUIPMENT OPERATION
Do not assign the same priority to different tasks.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
46 EIO0000001909 03/2018

Tasks
Task Priority Suggestions
 Priority 0 to 24: Controller tasks. Assign these priorities to tasks with a high availability

requirement.
 Priority 25 to 31: Background tasks. Assign these priorities to tasks with a low availability

requirement.

Task Preemption Due to Task Priorities
When a task cycle starts, it can interrupt any task with lower priority (task preemption). The
interrupted task will resume when the higher priority task cycle is finished.

NOTE: If the same input is used in different tasks the input image may change during the task cycle
of the lower priority task.
To improve the likelihood of proper output behavior during multitasking, a message is displayed if
outputs in the same byte are used in different tasks.
EIO0000001909 03/2018 47

Tasks
The embedded outputs are updated immediately after their writing and not at the end of the task
cycle.
The embedded inputs are updated immediately after their state modification and not only at the
beginning of the task cycle.

WARNING
UNINTENDED EQUIPMENT OPERATION
Map your inputs so that tasks do not alter the input images in an unexpected manner.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
48 EIO0000001909 03/2018

Tasks
Default Task Configuration

Default Task Configuration
For the Modicon LMC078 Motion Controller:
 The MAST task is automatically created by default as a cyclic task. Its preset priority is medium

(15), its preset interval is 10 ms, and its task watchdog service is activated with a time of 10 ms
and a sensitivity of 5. Refer to Task Priorities (see page 46) for more information on priority
settings. Refer to System and Task Watchdogs (see page 45) for more information on
watchdogs.

 A Motion task is created automatically. This task is declared as an external event task, and
reduces the number of external event tasks you can configure for other operations by one. The
Motion task is executed with the priority of the real-time process (the priority parameter is
ignored). Refer to Task Priorities (see page 46) for more information.

 A SR_Motion POU is created automatically and called by the Motion task.

NOTE: Do not delete the Motion task or change its Name, Type, or External event attributes. If you
do so, SoMachine does not detect an error when you build the application, but an error will be
returned by the Motion Library as soon as you attempt to use the application.
The default Cycle Time is 1 ms (Sercos Interface Configuration (see page 203)).
The Bus cycle options in the I/O Mapping tab of all devices that are controlled by the motion
application have to be set to the Motion task:

NOTE: You may consider putting all the code inside this task if the performance of the controller,
the size of the program and the functions executed in the program permit this.
You will need to monitor the execution time of this task during development and commissioning of
the machine. The parameters AvailableLoad (controller object), CycleLoad (Sercos object)
and RTBWriteRes (Sercos object) can be used to estimate the load that the code is causing in
the real-time process driving the Sercos bus. If you do not monitor the execution time, it could result
in the delaying the set points for drives and output values of I/Os. The diagnostic message
8507 SERCOS write cycle overflow indicates this situation.

Other Tasks
If code needs to be moved to other tasks, you should create additional tasks of Cyclic type and
select a priority in the range of 16 and 31.
EIO0000001909 03/2018 49

Tasks
50 EIO0000001909 03/2018

Modicon LMC078
Controller States and Behaviors
EIO0000001909 03/2018
Controller States and Behaviors

Chapter 7
Controller States and Behaviors

Introduction
This chapter provides you with information on controller states, state transitions, and behaviors in
response to system events. It begins with a detailed controller state diagram and a description of
each state. It then defines the relationship of output states to controller states before explaining the
commands and events that result in state transitions. It concludes with information about
Remanent variables and the effect of SoMachine task programming options on the behavior of
your system.

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
7.1 Controller State Diagram 52
7.2 Controller States Description 56
7.3 State Transitions and System Events 60
EIO0000001909 03/2018 51

Controller States and Behaviors
Controller State Diagram

Section 7.1
Controller State Diagram

Controller State Diagram

Controller State Diagram
This diagram describes the controller operating mode:
52 EIO0000001909 03/2018

Controller States and Behaviors
Legend:
 Controller states are indicated in ALL-CAPS BOLD
 User and application commands are indicated in Bold
 System events are indicated in Italics
 Decisions, decision results and general information are indicated in normal text
(1) For details on STOPPED to RUNNING state transition, refer to Run Command (see page 64).
(2) For details on RUNNING to STOPPED state transition, refer to Stop Command (see page 64).

Note 1
The power cycle (power interruption followed by a power-on) deletes all output forcing settings.
Refer to Controller State and Output Behavior (see page 61) for further details.

Note 2
There is a 4-5 second delay between entering the BOOTING state and the LED indication of this
state. The boot process can take up to 60 seconds under normal conditions. The outputs will
assume their initialization states.

Note 3
The application is loaded into RAM after verification of a valid boot application.
During the load of the boot application, a check context test occurs to verify that the remanent
variables are valid. If the check context test is invalid, the boot application will load but the controller
will assume STOPPED state (see page 66).

Note 4
During a successful application download, the following events occur:
 The application is loaded directly into RAM.
 By default, the boot application is created and saved into the SD card.
EIO0000001909 03/2018 53

Controller States and Behaviors
Note 5
The default behavior after downloading an application program is for the controller to enter the
STOPPED state irrespective of the AutoRun setting or the last controller state before the
download.
However, there are two important considerations in this regard:
Online Change: An online change (partial download) initiated while the controller is in the

RUNNING state returns the controller to the RUNNING state if successful. Before using the
Login with online change option, test the changes to your application program in a virtual or non-
production environment and confirm that the controller and attached equipment assume their
expected conditions in the RUNNING state.

NOTE: Online changes to your program are not automatically written to the boot application,
and will be overwritten by the existing boot application at the next reboot. If you wish your
changes to persist through a reboot, manually update the boot application by selecting Create
boot application in the Online menu (the controller must be in the STOPPED state to achieve
this operation).

Multiple Download: SoMachine has a feature that allows you to perform a full application
download to multiple targets on your network or fieldbus. One of the default options when you
select the Multiple Download... command is the Start all applications after download or online
change option, which restarts all download targets in the RUNNING state, but irrespective of
their last controller state before the multiple download was initiated. Deselect this option if you
do not want all targeted controllers to restart in the RUNNING state. In addition, before using
the Multiple Download option, test the changes to your application program in a virtual or non-
production environment and confirm that the targeted controllers and attached equipment
assume their expected conditions in the RUNNING state.

WARNING
UNINTENDED EQUIPMENT OPERATION
Always verify that online changes to a RUNNING application program operate as expected
before downloading them to controllers.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

WARNING
UNINTENDED EQUIPMENT OPERATION
Always verify that your application program will operate as expected for all targeted controllers
and equipment before issuing the "Multiple Download…" command with the "Start all
applications after download or online change" option selected.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
54 EIO0000001909 03/2018

Controller States and Behaviors
NOTE: During a multiple download, unlike a normal download, SoMachine does not offer the
option to create a boot application. You can manually create a boot application at any time by
selecting Create boot application in the Online menu on all targeted controllers (the controller
must be in the STOPPED state for this operation).

Note 6
The SoMachine software platform allows many powerful options for managing task execution and
output conditions while the controller is in the STOPPED or HALT states. Refer to Controller States
Description (see page 56) for further details.

Note 7
To exit the HALT state it is necessary to issue one of the reset commands (reset warm, reset cold,
reset origin), download an application or cycle power.
In case of non-recoverable event (hardware watchdog or internal error detected), a cycle power is
mandatory.

Note 8
The RUNNING state has two exception conditions.
They are:
 RUNNING with external error detected: this exception condition is indicated by the STS status

LED, which displays solid green with one red flash. You may exit this state by clearing the
external error. No controller commands are required.

 RUNNING with breakpoint: this exception condition is indicated by the STS status LED, which
displays three green flashes. Refer to Controller States Description (see page 56) for further
details.
EIO0000001909 03/2018 55

Controller States and Behaviors
Controller States Description

Section 7.2
Controller States Description

Controller States Description

Introduction
This section provides a detailed description of the controller states.

(1) The controller states can be read with the FC_DiagMsgRead function of the LMC078
PLCSystem library (see Modicon LMC078 Motion Controller, System Functions and Variables,
PLCSystem Library Guide) or in SoMachine with the message logger of the controller.

Controller States Table
The following table describes the controller states:

WARNING
UNINTENDED EQUIPMENT OPERATION
 Never assume that your controller is in a certain controller state before commanding a change

of state, configuring your controller options, uploading a program, or modifying the physical
configuration of the controller and its connected equipment.

 Before performing any of these operations, consider the effect on all connected equipment.
 Before acting on a controller, always positively confirm the controller state by viewing its LEDs,

verifying the presence of output forcing, and reviewing the controller status information via
SoMachine.(1)

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Controller state Description STS LED
BOOTING The controller executes the boot firmware and its own

internal self-tests. It then verifies the checksum of the
firmware and user applications. It does not execute the
application nor does it communicate.

Green/red flashing

BOOTING after
detection of a
system error

This state is the same as the normal BOOTING state except
that a flag is set to make it appear as if no boot application is
present and the LED indications are different.

Rapid red flashing

MINIMAL BOOT There is not a valid firmware file present in the SD card. The
controller does not execute the application.
 Refer to Upgrading Modicon LMC078 Motion Controller
Firmware (see page 245).

Red flashing
56 EIO0000001909 03/2018

Controller States and Behaviors
EMPTY There is no application present or an invalid application. Single green flash
EMPTY after
detection of a
system error

This state is the same as the normal EMPTY state except
that a flag is set to make it appear as if no boot application is
present (no application is loaded) and the LED indications
are different.

Rapid red flashing

RUNNING The controller is executing a valid application. Green
RUNNING with
breakpoint

This state is the same as the RUNNING state with the
following exceptions:
 The task-processing portion of the program does not

resume until the breakpoint is cleared.
 The LED indications are different.

For more information on breakpoint management, refer to
the SoMachine Menu Commands Online Help.

3 green flashes

RUNNING with
detection of an
external error

This state is the same as the normal RUNNING state except
the LED indications are different.

Green / single red flash

STOPPED The controller has a valid application that is stopped. See
Details of the STOPPED State (see page 58) for an
explanation of the behavior of outputs and field buses in this
state.

Green flashing

STOPPED with
detection of an
external error

This state is the same as the normal STOPPED state except
the LED indications are different.

Green flashing / single red
flash

HALT The controller stops executing the application because it has
detected an application error.
This description is the same as for the STOPPED state with
the following exceptions:
 Embedded outputs assume their Initialization values

(see page 61).
 CAN bus behaves as if the Update IO while in stop option

was not selected when managed by a task responsible
for the application error. Else, CAN bus behavior follows
the actual setting.

 The LED indications are different.

Single red flashing

Controller state Description STS LED
EIO0000001909 03/2018 57

Controller States and Behaviors
Details of the STOPPED State
The following statements are true for the STOPPED state:
 Ethernet, serial (Modbus, ASCII, and so on), and USB communication services remain

operational and commands written by these services can continue to affect the application, the
controller state, and the memory variables.

 All outputs initially assume their configured default state (Keep current values or Set all outputs
to default) or the state dictated by output forcing if used.The subsequent state of the outputs
depends on the value of the Update IO while in stop setting and on commands received from
remote devices.

Task and I/O behavior when “Update IO while in stop” is selected
When the Update IO while in stop setting is selected:
 The read inputs operation continues normally. The physical inputs are read and then written

to the %I input memory variables.
 The task processing operation is not executed.
 The write outputs operation continues. The %Q output memory variables are updated to

reflect either the Keep current values configuration or the Set all outputs to default
configuration, adjusted for any output forcing, and then written to the physical outputs.
NOTE: Commands received by Ethernet, serial, USB, and CAN communications can
continue to write to the memory variables. Changes to the %Q output memory variables are
written to the physical outputs.

CAN behavior when “Update IO while in stop” is selected
The following is true for the CAN buses when the Update IO while in stop setting is selected:
 The CAN bus remains fully operational. Devices on the CAN bus continue to perceive the

presence of a functional CAN master.
 TPDO and RPDO continue to be exchanged.
 The optional SDO, if configured, continue to be exchanged.
 The heartbeat and node guarding functions, if configured, continue to operate.
 If the Behavior for outputs in Stop field is set to Keep current values, the TPDOs continue to

be issued with the last actual values.
 If the Behavior for outputs in Stop field is Set all outputs to default the last actual values are

updated to the default values and subsequent TPDOs are issued with these default values.
Task and I/O behavior when “Update IO while in stop” is not selected

When the Update IO while in stop setting is not selected, the controller sets the I/O to either the
Keep current values or Set all outputs to default condition (as adjusted for output forcing if used).
After this, the following becomes true:
 The read inputs operation ceases. The %I input memory variables are frozen at their last

values.
 The task processing operation is not executed.
 The write outputs operation ceases. The %Q output memory variables can be updated via the

Ethernet, serial, and USB connections. However, the physical outputs are unaffected and
retain the state specified by the configuration options.
58 EIO0000001909 03/2018

Controller States and Behaviors
CAN behavior when “Update IO while in stop” is not selected
The following is true for the CAN buses when the Update IO while in stop setting is not selected:
 The CAN master ceases communications. Devices on the CAN bus assume their configured

fallback states.
 TPDO and RPDO exchanges cease.
 Optional SDO, if configured, exchanges cease.
 The heartbeat and node guarding functions, if configured, stop.
 The current or default values, as appropriate, are written to the TPDOs and sent once before

stopping the CAN master.
EIO0000001909 03/2018 59

Controller States and Behaviors
State Transitions and System Events

Section 7.3
State Transitions and System Events

Overview
This section begins with an explanation of the output states possible for the controller. It then
presents the system commands used to transition between controller states and the system events
that can also affect these states. It concludes with an explanation of the Remanent variables, and
the circumstances under which different variables and data types are retained through state
transitions.

What Is in This Section?
This section contains the following topics:

Topic Page
Controller States and Output Behavior 61
Commanding State Transitions 64
Error Detection, Types, and Management 69
Remanent Variables 70
60 EIO0000001909 03/2018

Controller States and Behaviors
Controller States and Output Behavior

Introduction
The Modicon LMC078 Motion Controller defines output behavior in response to commands and
system events in a way that allows for greater flexibility. An understanding of this behavior is
necessary before discussing the commands and events that affect controller states. For example,
typical controllers define only 2 options for output behavior in stop: fallback to default value or keep
current value.
The possible output behaviors and the controller states to which they apply are:
 managed by Application Program
 keep Current Values
 set All Outputs to Default
 Execute program
 hardware Initialization Values
 software Initialization Values
 Output Forcing

Managed by Application Program
Your application program manages outputs normally. This applies in the RUNNING and RUNNING
with External Error Detected states.

Keep Current Values
Select this option by choosing Keep current values in the Behavior for outputs in Stop drop-down
menu of the PLC settings subtab of the Controller Editor. To access the Controller Editor, right-
click on the controller in the device tree and select Edit Object.
This output behavior applies in the STOPPED controller state. It also applies to CAN bus in the
HALT controller state. Outputs are set to and maintained in their current state, although the details
of the output behavior vary greatly depending on the setting of the Update I/O while in stop option
and the actions commanded via configured fieldbusses.Refer to Controller States Description
(see page 56) for more details on these variations.

Set All Outputs to Default
Select this option by choosing Set all outputs to default in the Behavior for outputs in Stop drop-
down menu of the PLC settings subtab of the Controller Editor. To access the Controller Editor,
right-click on the controller in the device tree and select Edit Object.
This output behavior applies when the application is going from RUN state to STOPPED state or
if the application is going from RUN state to HALT state. It also applies to CAN bus in the HALT
controller state. Outputs are set to and maintained in their current state, although the details of the
output behavior vary greatly depending on the setting of the Update I/O while in stop option and
the actions commanded via configured fieldbusses.Refer to Controller States Description
(see page 56) for more details on these variations.
EIO0000001909 03/2018 61

Controller States and Behaviors
Execute Program
You determine the outputs behavior by a program available within the project.
Select this option by choosing Execute program in the Behavior for outputs in Stop drop-down
menu of the PLC settings subtab of the Controller Editor.
Click the button ... and select a POU with the Input Assistant.
This program is executed when the controller is in STOPPED state.

Hardware Initialization Values
This output state applies in the BOOTING and EMPTY (following power cycle with no boot
application or after the detection of a system error) states.
In the initialization state, outputs are set to 0.

Software Initialization Values
This output state applies when downloading or when resetting the application. It applies at the end
of the download or at the end of a reset warm or cold.
The software Initialization Values are the initialization values of outputs images (%I, %Q, or
variables mapped on %I or %Q).
By default, they are set to 0 but it is possible to map the I/O in a GVL and assign to the outputs a
value different from 0.

Output Forcing
The controller allows you to force the state of selected outputs to a defined value for the purposes
of system testing, commissioning, and maintenance.
You are only able to force the value of an output while your controller is connected to SoMachine.
To do so, use the Force values command in the Debug menu.
Output forcing overrides all other commands to an output irrespective of the task programming that
is being executed.
When you logout of SoMachine when output forcing has been defined, you are presented with the
option to retain output forcing settings. If you select this option, the output forcing continues to
control the state of the selected outputs until you download an application or use one of the Reset
commands.
When the option Update I/O while in stop, if supported by your controller, is checked (default state),
the forced outputs keep the forcing value even when the logic controller is in STOP.
62 EIO0000001909 03/2018

Controller States and Behaviors
Output Forcing Considerations
The output you wish to force must be contained in a task that is currently being executed by the
controller. Forcing outputs in unexecuted tasks, or in tasks whose execution is delayed either by
priorities or events will have no effect on the output. However, once the task that had been delayed
is executed, the forcing will take effect at that time.
Depending on task execution, the forcing could impact your application in ways that may not be
obvious to you. For example, an event task could turn on an output. Later, you may attempt to turn
off that output but the event is not being triggered at the time. This would have the effect of the
forcing being apparently ignored. Further, at a later time, the event could trigger the task at which
point the forcing would take effect.

WARNING
UNINTENDED EQUIPMENT OPERATION
 You must have a thorough understanding of how forcing will affect the outputs relative to the

tasks being executed.
 Do not attempt to force I/O that is contained in tasks that you are not certain will be executed

in a timely manner, unless your intent is for the forcing to take affect at the next execution of
the task whenever that may be.

 If you force an output and there is no apparent affect on the physical output, do not exit
SoMachine without removing the forcing.

Failure to follow these instructions can result in death, serious injury, or equipment damage.
EIO0000001909 03/2018 63

Controller States and Behaviors
Commanding State Transitions

Run Command
Effect: Commands a transition to the RUNNING controller state.
Starting Conditions: BOOTING or STOPPED state.
Methods for Issuing a Run Command:
 AutoRun parameter is set to 1 in the Configuration tab (see page 77): automatic start after

booting.
 IECProgramStateSet parameter is set to 1 in the Configuration tab (see page 77).
 SoMachine Online Menu: Select the Start command.
 Login with online change option: An online change (partial download) initiated while the

controller is in the RUNNING state returns the controller to the RUNNING state if successful.
 Multiple Download Command: sets the controllers into the RUNNING state if the Start all

applications after download or online change option is selected, irrespective of whether the
targeted controllers were initially in the RUNNING, STOPPED, HALT, or EMPTY state.

 The controller is restarted into the RUNNING state automatically under certain conditions.
Refer to Controller State Diagram (see page 52) for further details.

Stop Command
Effect: Commands a transition to the STOPPED controller state.
Starting Conditions: BOOTING, EMPTY, or RUNNING state.
Methods for Issuing a Stop Command:
 IECProgramStateSet parameter is set to 0 in the Configuration tab (see page 77).
 SoMachine Online Menu: Select the Stop command.
 Login with online change option: An online change (partial download) initiated while the

controller is in the STOPPED state returns the controller to the STOPPED state if successful.
 Download Command: implicitly sets the controller into the STOPPED state.
 Multiple Download Command: sets the controllers into the STOPPED state if the Start all

applications after download or online change option is not selected, irrespective of whether the
targeted controllers were initially in the RUNNING, STOPPED, HALT, or EMPTY state.

 The controller is restarted into the STOPPED state automatically under certain conditions.
Refer to Controller State Diagram (see page 52) for further details.
64 EIO0000001909 03/2018

Controller States and Behaviors
Reset Warm
Effect: Resets all variables, except for the remanent variables, to their default values. Places the
controller into the STOPPED state.
Starting Conditions: RUNNING, STOPPED, or HALT states.
Methods for Issuing a Reset Warm Command:
 SoMachine Online Menu: Select the Reset warm command.
 Using the FC_PrgResetAndStart function of the LMC078 PLCSystem Library (see Modicon

LMC078 Motion Controller, System Functions and Variables, PLCSystem Library Guide)
Effects of the Reset Warm Command:
1. The application stops.
2. Forcing is erased.
3. Diagnostic indications for errors are reset.
4. The values of the retain variables are maintained.
5. The values of the retain-persistent variables are maintained.
6. All non-located and non-remanent variables are reset to their initialization values.
7. All fieldbus communications are stopped and then restarted after the reset is complete.
8. All I/O are reset to their initialization values.
For details on variables, refer to Remanent Variables (see page 70).

Reset Cold
Effect: Resets all variables, except for the retain-persistent type of remanent variables, to their
initialization values. Places the controller into the STOPPED state.
Starting Conditions: RUNNING, STOPPED, or HALT states.
Methods for Issuing a Reset Cold Command:
 SoMachine Online Menu: Select the Reset cold command.
Effects of the Reset Cold Command:
1. The application stops.
2. Forcing is erased.
3. Diagnostic indications for errors are reset.
4. The values of the retain variables are reset to their initialization value.
5. The values of the retain-persistent variables are maintained.
6. All non-located and non-remanent variables are reset to their initialization values.
7. All fieldbus communications are stopped and then restarted after the reset is complete.
8. All I/O are reset to their initialization values.
For details on variables, refer to Remanent Variables (see page 70).
EIO0000001909 03/2018 65

Controller States and Behaviors
Reset Origin
Effect: Resets all variables, including the remanent variables, to their initialization values. Erases
all user files on the controller. Places the controller into the EMPTY state.
Starting Conditions: RUNNING, STOPPED, or HALT states.
Methods for Issuing a Reset Origin Command:
 SoMachine Online Menu: Select the Reset origin command.
Effects of the Reset Origin Command:
1. The application stops.
2. Forcing is erased.
3. All user files (Boot application, data logging, Post Configuration) are erased.
4. Diagnostic indications for errors are reset.
5. The values of the retain variables are reset.
6. The values of the retain-persistent variables are reset.
7. All non-located and non-remanent variables are reset.
8. All fieldbus communications are stopped.
9. All I/O are reset to their initialization values.
For details on variables, refer to Remanent Variables (see page 70).

Reboot
Effect: Commands a reboot of the controller.
Starting Conditions: Any state.
Methods for Issuing the Reboot Command:
 Power cycle
 Using the FC_SysReset function of the LMC078 PLCSystem Library (see Modicon LMC078

Motion Controller, System Functions and Variables, PLCSystem Library Guide)
Effects of the Reboot:
1. The state of the controller depends on a number of conditions:

a. The controller state will be RUNNING if:
The Reboot was provoked by a power cycle:
- the AutoRun parameter is set to 1, and if the controller was not in HALT state before the
power cycle, and if the remanent variables are valid.
The Reboot was provoked by a script and:
- the Starting Mode is set to Start in run, and if the Run/Stop input or switch is configured and
set to RUN, and if the controller was not in HALT state before the power cycle, and if the
remanent variables are valid.

b. The controller state will be STOPPED if:
The Reboot was provoked by a Power cycle:
- the AutoRun parameter is set to 0.
66 EIO0000001909 03/2018

Controller States and Behaviors
c. The controller state will be EMPTY if:
- There is no boot application or the boot application is invalid, or
- The reboot was provoked by specific System Errors.

d. The controller state will be INVALID_OS if there is no valid firmware.
2. Forcing is maintained if the boot application is loaded successfully. If not, forcing is erased.
3. Diagnostic indications for errors are reset.
4. The values of the retain variables are restored if saved context is valid.
5. The values of the retain-persistent variables are restored if saved context is valid.
6. All non-located and non-remanent variables are reset to their initialization values.
7. All fieldbus communications are stopped and restarted after the boot application is loaded

successfully.
8. All I/O are reset to their initialization values and then to their user-configured default values if

the controller assumes a STOPPED state after the reboot.
For details on variables, refer to Remanent Variables (see page 70).
NOTE: The Check context test concludes that the context is valid when the application and the
remanent variables are the same as defined in the Boot application.
NOTE: If you make an online change to your application program while your controller is in the
RUNNING or STOPPED state but do not manually update your Boot application, the controller will
detect a difference in context at the next reboot, the remanent variables will be reset as per a Reset
cold command, and the controller will enter the STOPPED state.

Download Application
Effect: Loads your application executable into the RAM memory. Optionally, creates a Boot
application in the SD card.
Starting Conditions: RUNNING, STOPPED, HALT, and EMPTY states.
Methods for Issuing the Download Application Command:
 SoMachine:

2 options exist for downloading a full application:
 Download command.
 Multiple Download command.
For important information on the application download commands, refer to Controller State
Diagram (see page 52).

 FTP: Load Boot application file to the SD card using FTP. The updated file is applied at the next
reboot.

Effects of the SoMachine Download Command:
1. The existing application stops and then is erased.
2. If valid, the new application is loaded and the controller assumes a STOPPED state.
3. Forcing is erased.
4. Diagnostic indications for errors are reset.
5. The values of the retain variables are reset to their initialization values.
6. The values of any existing retain-persistent variables are maintained.
7. All non-located and non-remanent variables are reset to their initialization values.
EIO0000001909 03/2018 67

Controller States and Behaviors
8. All fieldbus communications are stopped and then any configured fieldbus of the new
application is started after the download is complete.

9. All I/O are reset to their initialization values and then set to the new user-configured default
values after the download is complete.

For details on variables, refer to Remanent Variables (see page 70).
Effects of the FTP Download Command:
There are no effects until the next reboot. At the next reboot, the effects are the same as a reboot
with an invalid context. Refer to Reboot (see page 66).
68 EIO0000001909 03/2018

Controller States and Behaviors
Error Detection, Types, and Management

Error Management
The controller detects and manages three types of errors:
 external errors
 application errors
 system errors
This table describes the types of errors that may be detected:

NOTE: Refer to the LMC078 PLCSystem library Guide (see Modicon LMC078 Motion Controller,
System Functions and Variables, PLCSystem Library Guide) for more detailed information on
diagnostics.

Type of Error
Detected

Description Resulting
Controller State

External Error External errors are detected by the system while RUNNING or
STOPPED but do not affect the ongoing controller state. An external
error is detected in the following cases:
 A connected device reports an error to the controller.
 The controller detects an error with an external device, for example,

when the external device is communicating but not properly
configured for use with the controller.

 The controller detects an error with the state of an output.
 The controller detects a communication interruption with a device.
 The boot application in the SD card is not the same as the one in

RAM.

RUNNING with
External Error
Detected
Or
STOPPED with
External Error
Detected

Application
Error

An application error is detected when improper programming is
encountered or when a task watchdog threshold is exceeded.

HALT

System Error A system error is detected when the controller enters a condition that
cannot be managed during runtime. Most such conditions result from
firmware or hardware exceptions, but there are some cases when
incorrect programming can result in the detection of a system error, for
example, when attempting to write to memory that was reserved during
runtime, or when a system watchdog time-out occurs.

NOTE: There are some system errors that can be managed by runtime
and are therefore treated like application errors.

BOOTING →
EMPTY
EIO0000001909 03/2018 69

Controller States and Behaviors
Remanent Variables

Overview
Remanent variables can either be reinitialized or retain their values in the event of power outages,
reboots, resets, and application program downloads. There are multiple types of remanent
variables, declared individually as "retain" or "persistent", or in combination as "retain-persistent".
NOTE: For this controller, variables declared as persistent have the same behavior as variables
declared as retain-persistent.
This table describes the behavior of remanent variables in each case:

Action VAR VAR RETAIN VAR GLOBAL PERSISTENT
RETAIN

Online change to application program X X X
Online change modifying the boot
application (1)

– X X

Stop X X X
Power cycle – X X
Reset warm – X(2) X

Reset cold – – X
Reset origin – – –

Download of application program(3) – – X

X The value is maintained.
– The value is reinitialized.
(1) Retain variable values are maintained if an online change modifies only the code part of the boot

application (for example, a:=a+1; => a:=a+2;). In all other cases, retain variables are reinitialized.
(2) For more details on VAR RETAIN, refer to Effects of the Reset warm Command (see page 65).
(3) If the application is downloaded via SD card, any existing persistent variables used by the application are

reinitialized. If the application is downloaded using SoMachine, however, existing persistent variables
maintain their values. In both cases, if the downloaded application contains the same persistent variables
as the existing application, the existing retain variables maintain their values.
70 EIO0000001909 03/2018

Controller States and Behaviors
Adding Retain Persistent Variables
Declare retain persistent (VAR GLOBAL PERSISTENT RETAIN) symbols in the PersistentVars
window:

Step Action
1 Select the Application node in the Applications tree.
2 Click .
3 Choose Add other objects → Persistent variables
4 Click Add.

Result: The PersistentVars window is displayed.
EIO0000001909 03/2018 71

Controller States and Behaviors

72 EIO0000001909 03/2018

Modicon LMC078
Controller Device Editor
EIO0000001909 03/2018
Controller Device Editor

Chapter 8
Controller Device Editor

Introduction
This chapter describes how to configure the controller.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Controller Parameters 74
Configuration Parameters 76
Controller Selection 86
PLC Settings 88
EIO0000001909 03/2018 73

Controller Device Editor
Controller Parameters

Controller Parameters
To open the device editor, double-click MyController in the Devices tree:

Tabs Description

Tab Description Restriction
Configuration Access and configuration of the controller parameters. –
Controller selection
(see page 86)

Manages the connection between the PC and the controller:
 helping you find a controller in a network,
 presenting the list of available controllers, so you can connect to

the selected controller and manage the application in the
controller,

 helping you physically identify the controller from the device
editor,

 helping you change the communication settings of the controller.

The controller list is detected through NetManage or through the
Active Path based on the communication settings. To access the
Communication settings, click Project → Project Settings... in the
menu bar. For more information, refer to the SoMachine
Programming Guide (Communication Settings).

Online mode
only

Applications Presents the application running on the controller and allows
removing the application from the controller.

Online mode
only

Files File management between the PC and the controller. Online mode
only

Log View the controller log file. Online mode
only
74 EIO0000001909 03/2018

Controller Device Editor
PLC settings
(see page 88)

Configuration of:
 application for I/O handling
 I/O behavior in stop
 bus cycle options

–

Task deployment Displays a list of I/Os and their assignments to tasks. After
compilation
only

Users and Groups The Users and Groups tab is provided for devices supporting online
user management. It allows setting up users and access-rights
groups and assigning them access rights to control the access on
SoMachine projects and devices in online mode.
For more details, refer to the SoMachine Programming Guide.

–

Access Rights The Access Rights tab is provided for devices supporting online user
management. It serves to grant or deny the currently defined user
groups certain permissions, thus defining the access rights for users
on files or objects (for example, an application) on the controller
during runtime.
For more details, refer to the SoMachine Programming Guide.

–

Information Displays general information about the device (name, description,
provider, version, image).

–

Tab Description Restriction
EIO0000001909 03/2018 75

Controller Device Editor
Configuration Parameters

Overview
This illustration presents the Configuration tab:
76 EIO0000001909 03/2018

Controller Device Editor
NOTE: The parameters are also accessible in the application (ObjectName.ParameterName,
for example MyController.AvailableLoad).

NOTE: The parameters are also accessible through communication protocols.

Parameters Description
This table describes the controller parameters for diagnostic and configuration:

Parameter Access Param
. type

Data type Value Default value Description

General
Name R/W(*) EF STRING “ “ Symbolic name of the

configuration object.
AutoRun R/W ER BOOL

Enum
no / 0
yes / 1

no / 0  0 = Autorun is not activated.
 1 = The program starts

automatically after controller
booting.

IP_SubNetMask R AF STRING 255.255.0.0 255.255.0.0 Displays IP subnet mask.
IP_Address R AF STRING 192.168.100.1 192.168.100.1 Displays IP address.
IP_Gateway R AF STRING 0.0.0.0 0.0.0.0 Displays gateway address.
EthernetAddr R AF STRING “ “ Displays device-specific

Ethernet address.
MsgFilter R/W EF DWORD 0...FFFFh FFFFh Configures the message logger

filtering.
You can distinguish 16 classes
of message:
 Bit 0: General system

messages.
 Bit 1: Diagnostic messages.
 Bit 2: Program system

function block.
 Bit 3: Fieldbus-specific

information.
 Bit 4...11: Not used.
 Bit 12: Extented system

messages.
 Bit 13-14: Not used.
EIO0000001909 03/2018 77

Controller Device Editor
ControllerRe-
set

R/W(*) ED BOOL
Enum

FALSE / 0
TRUE / 1

TRUE / 1 To distinguish between a
program reset and a controller
reset. This parameter is set to 1
when the controller is reset. The
parameter can be set to 0 using
an application program.
In this way, you can distinguish
between a program reset and a
controller reset.
 0 = Program reset.
 1 = Controller reset.

IOReset R/W EF DINT
Enum

0...3 2 Defines the reset modes of I/O
areas:
 0 = No reset.
 1 = Reset after download.
 2 = Reset after download or

program reset.
 3 = Reset after download,

program reset, or program
stop.

Diagnosis
DiagClass R AD DINT - - Displays the diagnostic class

(see page 262) in decimal code.
DiagCode R AD DINT - - Displays the diagnostic code

(see page 262) in decimal code.
DiagSource R AD ST_Logi-

calAd-
dress

- - Specifies the source of the
diagnostic
(stLogicalAddress type)

DiagMsg R AD STRING - - Displays the diagnostic text.
DiagExtMsg R AD STRING - - Displays the extented diagnostic

message.
MsgEntries R AF DINT - - Number of entries in the

message logger.
FastTimer R AF UDINT - - Displays the timer in µs. The

timer is derived from the TSC
(TimeStampCounter) of the
CPU. The TSC is a 64-bit
counter that runs with the CPU
cycle. The counter runs
endlessly from 0 to 231-1. The
end value corresponds to
approximately 71 min.

Parameter Access Param
. type

Data type Value Default value Description
78 EIO0000001909 03/2018

Controller Device Editor
Timer1 R AF DINT - - Displays the time since system
startup in ms. After reaching the
maximum (231-1 ms, that is,
approximately, 24.8 days), it
starts counting upwards from 0.
The counter is automatically
started after a reset. The
resolution of Timer1 is the
CycleTime of the Sercos drive
bus.

Timer10 R AF DINT - - Displays the time since system
startup in 10 ms steps.

CycleLoad R AF DINT - - Indicates the utilization in % of
the real-time cycle (CycleLoad
Parameter (see page 84)).

RTBReadRes R AD DINT - - Displays the real-time read
reserve in µs.

RTBWriteRes R AD DINT - - Displays the real-time write
reserve in µs.

PowerOK R AF BOOL
Enum

FALSE / 0
TRUE / 1

FALSE / 0 Indicates power supply
undervoltage:
 0 = Supply voltage < 18 V.
 1 = Supply voltage > 18 V.

SetRealTime-
Clock

R/W(*) EF DT - - The controller RTC is set when
the SetRealTimeClock
parameter is written.
The parameter only displays the
time the clock was set or the
time of the last boot when the
hardware clock has been
installed and is functioning
properly.

RealTimeClock R AF DT - - Displays date and time of the
software clock, it is set
automatically after controller
boot from the real-time
hardware clock (running with
battery when the controller is
turned off).

Parameter Access Param
. type

Data type Value Default value Description
EIO0000001909 03/2018 79

Controller Device Editor
BatteryLow-
WarningDelay

R/W EF REAL 0...50 0.0 Delay for low battery message
in hours.
If the capacity of the battery
goes below a minimum value,
the diagnostic message
8037 Battery low is
triggered. If the diagnostic
message is acknowledged
without replacing the battery,
the diagnostic message will be
triggered after the defined delay
in this parameter. The delay of
the diagnostic message is not
continued when the system is
reset.

Versions
FW_Version R AK STRING - - Displays the firmware version of

the controller and the creation
date.

Controller-
Type

R AK STRING - - Displays various hardware
information:
 Controller type: Name of the

controller type.
 AX: Maximum number of

axes according to cycle time.
 RAM: Main memory

expansion in Mbytes.
 NVRAM: NVRAM expansion

in Kbytes.
 Disks: SD card size in

Mbytes.
Controller-
Type1

R AK STRING - - Displays various hardware
information:
 PFPGA version.
 CPU version.
 Bios version.
 SFPGA version.

HW_Code R AK STRING - - Displays the hardware code of
the controller.

SerialNumber R AK STRING - - Displays the serial number of
the controller.

Parameter Access Param
. type

Data type Value Default value Description
80 EIO0000001909 03/2018

Controller Device Editor
Memory & Disks
RamDiskSize R/W ER DINT 128...4096 1024 Defines the size of the RamDisk

in Kbytes.
When switching on the
controller, a RamDisk with the
identifier ram0: is generated in
the main memory. The system
uses the RamDisk as a
temporary memory for data
when reading off the message
logger.

RamDiskFree R AF DINT - - Displays the free memory space
of the RamDisk.

Diskfree R AF DINT - - Displays the free memory space
of the SD card.

Memoryfree R AF DINT - - Displays the free memory space
of the RAM system memory.

System
Systemticks R/W ER DINT 10...20000 4000 This can be used to set the

system cycle of the controller.

NOTE: Consult the Schneider
Electric application department
when attempting to change this
parameter.

EnableLoadEff R/W(*) EF BOOL
Enum

off / 0
on / 1

off / 0 This parameter starts and stops
the effective CPU load
measurement:
 0 = Effective CPU load

measurement stopped.
 1 = Effective CPU load

measurement started.
AvailableLoad R AD DINT 0...100 0 Displays the available CPU time

in %.
Available-
LoadPeriod

R/W EF DINT 1...2000 100 Defines the measurement
period for the effective CPU load
measurement in ms. The
remaining calculation time is
calculated for this period.

Parameter Access Param
. type

Data type Value Default value Description
EIO0000001909 03/2018 81

Controller Device Editor
RemoteCommu-
nicationAc-
cess

R/W ER DINT
Enum

read only / 0
read/write / 1
read/write/
save / 2

read/write/
save / 2

You can change various
communication parameters of
the controller using the
NetManage tool.
 If this is not desired, you can
prevent it using the parameter
RemoteCommunicationAcce
ss:
 0 = The values are displayed

in the NetManage tool, but
the controller does not permit
any changes to the
communication parameters.

 1 = The controller
temporarily changes its
communication parameters.

 2 = The controller changes
its communication
parameters and immediately
saves them on the SD card
(thus keeping this setting
even when being restarted).
Saving is optional and can be
selected in the NetManage
tool.

ActivateFa-
talCrashReac-
tion

R/W ED BOOL
Enum

no / 0
yes / 1

yes / 1 Activates/deactivates the
specific behavior when the
controller stops responding.

IEC-Program
IECRetainFree R AF DINT - - Displays the free memory in the

retain area.
ProjectDate R AD DT - - Displays the project date.
ProjectName R AD STRING - - Displays the project name.
ProjectTitle R AD STRING - - Displays the project title.
ProjectVer-
sion

R AD STRING - - Displays the project version.

ProjectAuthor R AD STRING - - Displays the project author.
ProjectDe-
scription

R AD STRING - - Displays the project description.

Parameter Access Param
. type

Data type Value Default value Description
82 EIO0000001909 03/2018

Controller Device Editor
(*) For more information on the parameter access rights, refer to Parameter Types (see page 27).

Program-
mingSystem

R AD STRING - - Displays the programming
system version (PSV) and the
version of the device description
(TSV) that was used to create
the program.

OnlineChange-
Counter

R AD DINT - 0 The value indicates how many
online change updates of the
program sequences have been
made since the last program
download. Using this value,
certain initialization steps can be
called in the program after an
online change.

IECProgram-
StateSet

R/W EF DINT
Enum

stop / 0
start / 1

stop / 0 Starts / stops the IEC program
and presents the current state of
the IEC program.

–
ObjectType R AD STRING LMCxx8 LMCxx8 Object type.
stLogicalAd-
dress

R AD ST_Logica
lAddress

- - Logical address of the controller
parameters.
stLogicalAddress =
STRUCT (udiType,
udiInstance,
udiParameterId)

udiType R - UDINT - -
udiInstance R - UDINT - -
udiParameter-
Id

R - UDINT - -

Parameter Access Param
. type

Data type Value Default value Description
EIO0000001909 03/2018 83

Controller Device Editor
CycleLoad Parameter
The parameter CycleLoad indicates the utilized capacity (in %) of the controller by the real-time
process. The value of the parameter should not exceed a mean of 40 to 50% (brief peaks are
tolerated). The remaining 50-60% are then available for the other system functions such as the
fieldbus server, network, and the program. Diagnostic message 8511 CPU time overflow is
sent when 100% is reached.
The CycleLoad parameter is a simple and clear variable for evaluating the system load.

This illustration presents the relationship between the parameters CycleLoad and
RTBWriteRes:

The real-time process (RTP) is the most important system task. It is responsible for executing all
real-time tasks at the correct time. Real-time processing is triggered by the Sercos real-time bus
during each bus cycle.
84 EIO0000001909 03/2018

Controller Device Editor
CycleLoad is performed in 2 main steps:

NOTE: Certain externally event-controlled tasks and also high-priority tasks can adversely affect
the execution of the real-time process. Monitoring the variables CycleLoad, RTBReadRes and
RTBWriteRes allows the evaluation of the dynamic behavior.

Step Description
1  Preparation of the cycle.

 Initialization of measuring variables and monitoring.
 Acceptance of the real-time data provided by the most recent drive telegrams (ATs) of the

Sercos slaves.
 Processing of all master encoders such as virtual master encoders and physical master

encoders.
 Processing of all slave encoders.
 All axes:
 Diagnostic status.
 Status machine of the drives.
 Real-time job preparation.
 POS and CAM generators (master and slave curves) …
 New reference values are now available.
 The data is transmitted in the master data telegram (MDT) in the next cycle.

 The reference values are transferred for transmission in the next cycle.

2 The remaining real-time functions are executed, such as:
 Touchprobe.
 Trace, and so on...
EIO0000001909 03/2018 85

Controller Device Editor
Controller Selection

Introduction
This tab allows you to manage the connection from the PC to the controller:
 Helping you find a controller in a network.
 Presenting the list of controllers, so you can connect to the selected controller and manage the

application inside the controller.
 Helping you physically identify the controller from the device editor.
 Helping you process the communication settings of the controller.

Controller Selection Toolbar
The toolbar contains the following buttons:

Label Button Description
1 Optical Click this button to cause the selected controller to indicate an optical signal: It

flashes a control LED quickly. This can help you to identify the respective
controller if many controllers are used.
The function stops on a second click or after about 30 seconds.

2 Optical and
acoustical

Not supported.

3 Update Click this button to refresh the list of controllers. A request is sent to the
controllers in the network. Any controller that responds to the request is listed
with the current values.
Pre-existing entries of controllers are updated with every new request.
Controllers that are already in the list but that do not respond to a new request
are not deleted. They are marked as inactive by a red cross being added to the
controller icon.
The Update button corresponds to the Refresh list command that is provided in
the context menu if you right-click a controller in the list.
To refresh the information of a selected controller, the context menu provides
the command Refresh this controller. This command requests more detailed
information from the selected controller.

NOTE: The Refresh this controller command can also refresh the information
of other controllers.
86 EIO0000001909 03/2018

Controller Device Editor
For more information on the Controller selection view of the device editor, refer to the SoMachine
Programming Guide.

Process Communication Settings
The Process communication settings window lets you change the Ethernet communication
settings. To do so, click Controller selection tab. The list of controllers available in the network
appears. Select and right-click the required row and click Process communication settings ... in the
context menu.
You can configure the Ethernet settings in the Process communication settings window in 2 ways:
 Without the Save settings permanently option:

Configure the communication parameters and click OK. These settings are immediately taken
into account and are not kept if the controller is reset.

 With the Save settings permanently option:
You can also activate the Save settings permanently option before you click OK. Once this
option is activated, the configured Ethernet parameters are stored on the SD card. After reset
of the controller, the configured Ethernet parameters from the SD card will be active.

4 Remove inactive
controllers from
list

Controllers that do not respond to a network scan are marked as inactive in the
list. This is indicated by a red cross being added to the controller icon. Click this
button to remove all controllers marked as inactive controllers simultaneously
from the list.

NOTE: Because of network issues, a controller can be marked as inactive
even if not.
The context menu that opens if you right-click a controller in the list provides 2
other commands for removing controllers:
 The Remove selected controller from list command allows you to remove

only the selected controller from the list.
 The Remove all controllers from list command allows you to remove all

controllers simultaneously from the list.
5 New favorite You can use Favorites to adjust the selection of controllers to your personal

requirements. This can help you to keep track of many controllers in the
network.
A Favorite describes a collection of controllers that are recognized by a unique
identifier.
Click a favorite button (such as Favorite 0) to select or deselect it. If you have
not selected a favorite, all detected controllers are visible.
You can also access Favorites via the context menu. It opens upon right-
clicking a controller in the list.
Move the cursor over a favorite button in the toolbar to view the associated
controllers as a tooltip.

6 Favorite x

Label Button Description
EIO0000001909 03/2018 87

Controller Device Editor
PLC Settings

Overview
The figure below presents the PLC Settings tab:

Element Description
Application for I/O handling By default, set to Application because there is only one application in the

controller.
PLC settings Update IO while in

stop
If this option is activated, the values of the input and output channels get also
updated when the controller is stopped.

Behavior for outputs
in Stop

From the selection list, choose one of the following options to configure how the
values at the output channels should be handled in case of controller stop:
 Keep current values
 Set all outputs to default
 Execute program

Update all variables
in all devices

If this option is activated, then for all devices of the current controller
configuration all I/O variables will get updated in each cycle of the bus cycle
task. This corresponds to the option Always update variables, which can be set
separately for each device in the I/O Mapping dialog.

Bus cycle
options

Bus cycle task This configuration setting is the parent for all Bus cycle task parameters used
in the application device tree.
Some devices with cyclic calls, such as a CANopen manager, can be attached
to a specific task. In the device, when this setting is set to Use parent bus cycle
setting, the setting set for the controller is used.
The selection list offers all tasks currently defined in the active application. The
default setting is the MAST task.

NOTE: <unspecified> means that the task is in "slowest cyclic task" mode.
88 EIO0000001909 03/2018

Controller Device Editor
Additional
settings

Generate force
variables for IO
mapping

Not used.

Enable Diagnosis for
devices

Not used.

Element Description
EIO0000001909 03/2018 89

Controller Device Editor

90 EIO0000001909 03/2018

Modicon LMC078
Embedded I/Os Configuration
EIO0000001909 03/2018
Embedded Inputs and Outputs Configuration

Chapter 9
Embedded Inputs and Outputs Configuration

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Embedded I/O Configuration 92
Master Encoder Input Configuration 100
EIO0000001909 03/2018 91

Embedded I/Os Configuration
Embedded I/O Configuration

Introduction
The Modicon LMC078 Motion Controller provides:
 12 embedded inputs:
 8 digital inputs: DI_0...DI_7
 4 advanced digital inputs (touchprobe and interrupt): ADI_0...ADI_3

 8 embedded outputs:
 7 digital outputs: DQ_0...DQ_6
 1 digital output configurable as watchdog output: DQ_WD

Digital Input Group Configuration
To configure the digital input group, double-click the DIG_DigitalIn node in the Devices tree.

This table describes the different parameters:

(*) For more information on the parameter access rights, refer to Parameter Types (see page 27).

Parameter Access Param.
type

Data type Description

Name R/W(*) EF STRING(40) Symbolic name of the configuration object.

Bit0_7 R AF USINT Value of the digital inputs DI_0...DI_7, each bit
is assigned to an input.
Bit x = value of input DI_x

Bit8_11 R AF USINT Value of the advanced digital inputs
ADI_0...ADI_3, each bit is assigned to an
advanced input.
Bit x = value of input ADI_x

ObjectType R AD STRING Object type.
stLogicalAddress R AD ST_LogicalAddress Logical address of the input group.
92 EIO0000001909 03/2018

Embedded I/Os Configuration
Digital Input Configuration
To configure a digital input, double-click the DI_x node in the Devices tree.

This table describes the input parameters:

(*) For more information on the parameter access rights, refer to Parameter Types (see page 27).

Parameter Access Param.
type

Data type Value Default
value

Description

Name R/W(*) EF STRING(40) “ “ Symbolic name of the
configuration object.

Value R AD BOOL Enum L / 0
H / 1

- Value of the digital input.

FilterTime R/W EF UDINT 90...4294967 100 Filter time of the input in µs.
ObjectType R AD STRING D_IN5 D_IN5 Object type.
stLogicalAddress R AD ST_Logica-

lAddress
- - Logical address of the inputs.
EIO0000001909 03/2018 93

Embedded I/Os Configuration
Advanced Digital Input Configuration
To configure an advanced digital input, double-click the ADI_x node in the Devices tree.

This table describes the advanced input parameters:

Parameter Access Param.
type

Data type Value Default
value

Description

Name R/W(*) EF STRING(40) “ “ Symbolic name of the
configuration object.

Value R AD BOOL Enum L / 0
H / 1

- Value of the advanced
digital input.

FilterTime R/W EF UDINT 90...4294967 100 Filter time of the input in
µs.

CaptureState R AD DINT Enum inactive / 0
active / 1
captured / 2
overflow / 3
disabled / 4
not ready / 5
virtual / 6

inactive /
0

State of capture
function.

SensorDelay R/W EF LREAL -100...100 0 Sensor delay in ms.
Counter R EF UDINT - 0 Counter of input.
Enable R/W(*) EF BOOL Enum off / 0

on / 1
off / 0 Enables the interrupt

function of the input.
ExtEventEdge R/W EF DINT Enum negative / 0

positive / 1
negative and
positive / 2

positive /
1

Defines the active edge
of the input.
94 EIO0000001909 03/2018

Embedded I/Os Configuration
(*) For more information on the parameter access rights, refer to Parameter Types (see page 27).

Digital Output Group Configuration
To configure the digital output group, double-click the DQG_DigitalOut node in the Devices tree.

This table describes the different parameters:

ObjectType R AD STRING D_IN62 D_IN62 Object type.
stLogicalAd-
dress

R AD ST_LogicalAd-
dress

- - Logical address of the
advanced inputs.

Parameter Access Param.
type

Data type Value Default
value

Description

Parameter Access Param.
type

Data type Value Default value Description

Name R/W(*) EF STRING(4
0)

“ “ Symbolic name of the
configuration object.

Bit0_7 R/W(*) EF USINT 0 0 Value of the digital outputs
DQ_0...DQ_7, each bit is
assigned to an output.
Bit x = value of output DQ_x

DiagMask R/W EF UINT 2#11111111 2#11111111 Enables the diagnostic message
8788 Wiring error for each
output, each bit is assigned to an
output.
Bit x = 0 , the output x is not
monitored and the diagnostic
message is not displayed.
EIO0000001909 03/2018 95

Embedded I/Os Configuration
(*) For more information on the parameter access rights, refer to Parameter Types (see page 27).

Digital Output Configuration
To configure a digital output, double-click the DQ_x node in the Devices tree.

OpenloadDi-
agMask

R/W EF UINT 2#11111111 2#11111111 Enables the diagnostic message
8788 Wiring error /
Openload for each output, each
bit is assigned to an output.
Bit x = 0 , the output x is not
monitored and the diagnostic
message is not displayed.

OverloadDi-
agMask

R/W EF UINT 2#11111111 2#11111111 Enables the diagnostic message
8788 Wiring error /
Overload for each output, each
bit is assigned to an output.
Bit x = 0 , the output x is not
monitored and the diagnostic
message is not displayed.

ObjectType R AD STRING D_OUTG5 D_OUTG5 Object type.
stLogicalAd-
dress

R AD ST_Logica-
lAddress

- - Logical address of the output
group.

Parameter Access Param.
type

Data type Value Default value Description
96 EIO0000001909 03/2018

Embedded I/Os Configuration
This table describes the output parameters:

(*) For more information on the parameter access rights, refer to Parameter Types (see page 27).

Parameter Access Param.
type

Data type Value Default
value

Description

Name R/W(*) EF STRING(40) “ “ Symbolic name of the
configuration object.

Value R/W(*) ED BOOL
Enum

L / 0
H / 1

L / 0 Displays the value of the digital
output.

Status R AF DINT Enum default / 0
openload / 1
overload / 2

default / 0 Displays the status of the digital
output:
 0: default state
 1: no load available
 2: there is a short circuit

EnableDiagMsg R/W(*) EF BOOL
Enum

L / 0
H / 1

H / 1 0 = The output does not report
the diagnostic message 8788
Wiring error.
1 = The output reports the
diagnostic message 8788
Wiring error.

OpenloadDi-
agMsg

R/W(*) EF BOOL
Enum

L / 0
H / 1

H / 1 0 = The output does not report
the diagnostic message 8788
Wiring error / Openload.
1 = The output reports the
diagnostic message 8788
Wiring error / Openload.

OverloadDi-
agMsg

R/W(*) EF BOOL
Enum

L / 0
H / 1

H / 1 0 = The output does not report
the diagnostic message 8788
Wiring error / Overload.
1 = The output reports the
diagnostic message 8788
Wiring error / Overload.

ObjectType R AD STRING D_OUT1 D_OUT1 Object type.
stLogicalAd-
dress

R AD ST_Logical
Address

- - Logical address of the outputs.
EIO0000001909 03/2018 97

Embedded I/Os Configuration
Watchdog Output Configuration
To configure the watchdog output, double-click the DQ_WD node in the Devices tree.

This table describes the watchdog output parameters:

Parameter Access Param.
type

Data type Value Default
value

Description

Name R/W(*) EF STRING(40) “ “ Symbolic name of the
configuration object.

Value R/W(*) ED BOOL Enum L / 0
H / 1

L / 0 Displays the value of the
watchdog output.

Status R AF DINT Enum default / 0
openload / 1
overload / 2

default / 0 Displays the status of the
watchdog output:
 0: default state
 1: no load available
 2: there is a short circuit

EnableDiagMsg R/W(*) EF BOOL Enum L / 0
H / 1

H / 1 0 = The output does not report
the diagnostic message 8788
Wiring error.
1 = The output reports the
diagnostic message 8788
Wiring error.

OpenloadDi-
agMsg

R/W(*) EF BOOL Enum L / 0
H / 1

H / 1 0 = The output does not report
the diagnostic message 8788
Wiring error / Openload.
1 = The output reports the
diagnostic message 8788
Wiring error / Openload.
98 EIO0000001909 03/2018

Embedded I/Os Configuration
(*) For more information on the parameter access rights, refer to Parameter Types (see page 27).

OverloadDi-
agMsg

R/W(*) EF BOOL Enum L / 0
H / 1

H / 1 0 = The output does not report
the diagnostic message 8788
Wiring error / Overload.
1 = The output reports the
diagnostic message 8788
Wiring error / Overload.

WDOutEnable R/W ED BOOL Enum off / 0
on / 1

off / 0 0 = The watchdog output is
deactivated.
1 = The watchdog output is
activated and controlled by the
system watchdog
(see page 45).

ObjectType R AD STRING D_OUT2 D_OUT2 Object type.
stLogicalAd-
dress

R AD ST_Logical
Address

- - Logical address of the
watchdog output.

Parameter Access Param.
type

Data type Value Default
value

Description
EIO0000001909 03/2018 99

Embedded I/Os Configuration
Master Encoder Input Configuration

Introduction
The controller has a specific hardware encoder interface that can support:
 Incremental encoder (RS422)
 Absolute encoder (SinCos Hiperface)
The goal of this function is to connect an encoder to acquire a position that is synchronous with the
Sercos real-time bus. This acquired position can then be used as the master axis for motion drives
on Sercos.
The master encoder configuration is split in two parts:
 The encoder node that supports the hardware configuration.
 The SoftMotion_Encoder node that supports the scaling configuration.

Add an Encoder
To add an encoder to your controller, select Incremental Encoder Input or SinCos Encoder Input
in the Hardware Catalog, drag it to the Devices tree, and drop it on your controller node.
Result: The encoder is added to your controller as a new subnode and a SoftMotion_Encoder node
is added as a subnode of your encoder.
For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)

Incremental Encoder Configuration
To configure the incremental encoder, double-click the encoder node in the Devices tree:
100 EIO0000001909 03/2018

Embedded I/Os Configuration
This table describes the incremental encoder parameters:

Parameter Access Param.
type

Data type Value Default
value

Description

Name R/W(*) EF STRING(40) “ “ Symbolic name of the
configuration object.

Enable R/W EF BOOL Enum off / 0
on / 1

on / 1 Enables the encoder:
 0 = The encoder is not

processed by the real-time
process.

 1 = The encoder is
processed by the real-time
process.

State R AD DINT Enum not ready / 0
initialization / 1
no sync / 2
ready / 3

not ready /
0

Displays the availability and
the validity of the encoder
position data:
 0 = The encoder or

encoder processing is not
ready.

 1 = Encoder processing is
initialized.

 2 = Encoder processing
does not run
synchronously with the
RTP.

 3 = The velocity and
position values of the
encoder are valid.

Filter R/W EF DINT 0...1024 0 Filtering value in ms.
The filter is a low-pass filter
and affects the actual velocity.
If the filter is set too high, it can
lead to oscillation of the
system depending on the
velocity path.

CheckOff R/W EF BOOL Enum no / 0
yes / 1

no / 0 Disables the encoder
monitoring:
 0 = Encoder verification

active.
 1 = Encoder monitoring not

active (track and cable
monitoring).
EIO0000001909 03/2018 101

Embedded I/Os Configuration
(*) For more information on the parameter access rights, refer to Parameter Types (see page 27).

ZeroTrack-
CheckOff

R/W EF BOOL Enum no / 0
yes / 1

no / 0 Disables the zero track
monitoring of the encoder:
 0 = Zero track monitoring

active.
 1 = Zero track monitoring

not active.
ZeroTrack-
Start

R/W(*) EF BOOL Enum FALSE / 0
TRUE / 1

FALSE / 0 A rising edge of this parameter
enables the zero track
detection:
 0 = Zero track detection

disabled.
 1 = Zero track detection

enabled.
ZeroTrack-
Detected

R AD BOOL Enum FALSE / 0
TRUE / 1

FALSE / 0 When zero track detection is
enabled, this parameter
indicates the zero track
detection:
 0 = Zero track not

detected.
 1 = Zero track detected.

When a zero track is detected,
the position of the encoder is
set to 0.

DiagClass R AD DINT - - Displays the diagnostic class
(see page 262) in decimal
code.

DiagCode R AD DINT - - Displays the diagnostic code
(see page 262) in decimal
code.

DiagSource R AD ST_LogicalAd-
dress

- - Logical address of the
diagnostic source.

DiagMsg R AD STRING - - Diagnostic message.
DiagExtMsg R AD STRING - - Extented diagnostic message.
ObjectType R AD STRING INC_IN2 INC_IN2 Object type.
stLogica-
lAddress

R AD ST_LogicalAd-
dress

- - Logical address of the
incremental encoder.

Parameter Access Param.
type

Data type Value Default
value

Description
102 EIO0000001909 03/2018

Embedded I/Os Configuration
Hiperface (SinCos) Encoder Configuration
To configure the Hiperface encoder, double-click the encoder node in the Devices tree:

This table describes the Hiperface encoder parameters:

Parameter Access Param.
type

Data type Value Default
value

Description

Name R/W(*) EF STRING(40) “ “ Symbolic name of the
configuration object.

Enable R/W EF BOOL Enum off / 0
on / 1

on / 1 Enables the encoder:
 0 = The encoder is not

processed by the real-
time process.

 1 = The encoder is
processed by the real-
time process.

Filter R/W EF DINT 0...1024 0 Filtering value in ms.
The filter is a low-pass filter
and affects the actual
velocity. If the filter is set too
high, it can lead to oscillation
of the system depending on
the velocity path.
EIO0000001909 03/2018 103

Embedded I/Os Configuration
CheckOff R/W EF BOOL Enum no / 0
yes / 1

no / 0 Disables the encoder
monitoring:
 0 = Encoder monitoring

active.
 1 = Encoder monitoring

not active. The diagnostic
message 8601 Master
Encoder signal out
of range is disabled.

Encoder-
Type

R AK DINT - - Displays the supported
SinCos Hiperface encoder
type (read at controller boot):
 00h: value not yet read
 02h: SCS 60/70
 07h: SCM 60/70 multi

turn
 22h: SRS 50/60/64 and

SCK 25/35/40/45/53
single turn

 27h: SRM 50/60/64 and
motor 25/35/40/45/53
multi turn

 32h: SKS 36 single turn
 37h: SKM 36 multi turn
 42h: SEK 52 single turn

Parameter Access Param.
type

Data type Value Default
value

Description
104 EIO0000001909 03/2018

Embedded I/Os Configuration
State R AD DINT Enum not ready / 0
initialization / 1
no sync / 2
get type / 3
ready / 10
read position / 11
write position / 12
read error code /
13

not ready /
0

Displays the availability and
the validity of the encoder
position data:
 0: The encoder or

encoder processing is not
ready.

 1: Encoder processing is
initialized.

 2: Encoder processing
does not run
synchronously with the
RTP.

 3: The encoder type is
read out.

 4...9: Invalid state.
 10: The velocity and

position values of the
encoder are valid.

 11: The absolute position
is read from the encoder.

 12: The absolute position
is written into the
encoder.

 13: The error code is read
from the encoder.

Signal-
Quality

R AF UDINT - - Describes the signal quality
of the analog sine and
cosine tracks of the encoder
(in %).
The sine and cosine signals
must correspond to the
following formula:
Sine signal² + cosine
signal² = 1 (100%)
This parameter represents
this formula normalized to
100%.

Signal-
Quali-
tyLimit

R EF UDINT 50 50 This parameter determines
at which value of
SignalQuality the
diagnostic code 8601
Master encoder signal
out of the range is
issued.

Parameter Access Param.
type

Data type Value Default
value

Description
EIO0000001909 03/2018 105

Embedded I/Os Configuration
SoftMotion Encoder Configuration
To configure the SoftMotion encoder, double-click the SoftMotion_Encoder node in the Devices
tree.
The configuration of SoftMotion encoder is described in the SoMachine online help, chapter
Programming with SoMachine / SoftMotion / SoftMotion Device Editor.

DiagClass R AD DINT - - Displays the diagnostic class
(see page 262) in decimal
code.

DiagCode R AD DINT - - Displays the diagnostic code
(see page 262) in decimal
code.

DiagSource R AD ST_LogicalAd
dress

- - Logical address of the
diagnostic source.

DiagMsg R AD STRING - - Diagnostic message.
DiagExtMsg R AD STRING - - Extented diagnostic

message.
ObjectType R AD STRING P_ENC2 P_ENC2 Object type.
stLogica-
lAddress

R AD ST_LogicalAd-
dress

- - Logical address of the
Hiperface encoder.

Parameter Access Param.
type

Data type Value Default
value

Description
106 EIO0000001909 03/2018

Modicon LMC078
Communication Modules
EIO0000001909 03/2018
Communication Modules

Chapter 10
Communication Modules

Introduction
This chapter describes how to add and configure a communication module.

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
10.1 PROFIBUS DP Slave Module Configuration 108
10.2 EtherNet/IP Adapter Configuration 119
10.3 Ethernet/IP Scanner Configuration 130
EIO0000001909 03/2018 107

Communication Modules
PROFIBUS DP Slave Module Configuration

Section 10.1
PROFIBUS DP Slave Module Configuration

Introduction
This section describes the configuration of the VW3E704000000 PROFIBUS DP module.

What Is in This Section?
This section contains the following topics:

Topic Page
Add a PROFIBUS DP Slave Module 109
PROFIBUS DP Slave Module Configuration 111
Acyclic Data Exchange 116
108 EIO0000001909 03/2018

Communication Modules
Add a PROFIBUS DP Slave Module

Overview
With the PROFIBUS protocol, the data is exchanged according to the master/slave principle. Only
the master can initialize communication. The slaves respond to requests from masters. Several
masters can coexist on the same bus. In this case, the slave I/O can be read by all the masters.
However, a single master has write access to the outputs. The number of data items exchanged
is defined during the configuration.
There are 2 types of exchange services supported by this module:
 I/O cyclic frame exchanges
 Acyclic data exchanges with PROFIBUS DPV1 function

Add a PROFIBUS DP Slave Module
Select the PROFIBUS-DPV1-Slave module in the Hardware Catalog, drag it to the Devices tree,
and drop it on your controller node.
For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)

Add Virtual I/O Devices
Below a PROFIBUS DP slave module you can add one or several virtual I/O devices.
The PROFIBUS DP slave module is an intermediate between the PROFIBUS master and the
controller, and data is exchanged by using virtual I/O devices that you define when configuring the
module. The virtual devices are not physical I/O modules, but are logical input and output objects
within the module that you can then map to memory within the controller. These input and output
objects are read from and written to by the PROFIBUS master. In turn, the module reads and writes
this data to I/O memory locations in the controller so that you can use the data within your
application program.
Select the virtual I/O devices in the Hardware Catalog, drag it to the Devices tree, and drop it on
the PROFIBUS-DPV1-Slave node.
For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)
EIO0000001909 03/2018 109

Communication Modules
The virtual I/O devices you define within the module can be either input or output, and can vary in
size as defined by the table:

Once you have defined these virtual input and/or output devices within the module, you can then
map these devices to memory locations within the controller. The type of memory objects you map
these virtual I/O devices to depends on the type of exchange you define between the master and
the slave.

Name Number of I/O Format
X byte input (0x••) X= 1,2,3,4,8,12,16,20,32 or 64 Byte
X byte input con (0x••) X= 1,2,3,4,8,12,16,20,32 or 64
X byte output (0x••) X= 1,2,3,4,8,12,16,20,32 or 64
X byte output con (0x••) X= 1,2,3,4,8,12,16,20,32 or 64
X word input (0x••) X= 1,2,3,4,8,12,16,20,32 or 64 Word
X word input con (0x••) X= 1,2,3,4,8,12,16,20,32 or 64
X word output (0x••) X= 1,2,3,4,8,12,16,20,32 or 64
X word output con (0x••) X= 1,2,3,4,8,12,16,20,32 or 64
110 EIO0000001909 03/2018

Communication Modules
PROFIBUS DP Slave Module Configuration

PROFIBUS DP Slave Module Configuration
In the Devices tree, double-click PBS_Slave (PROFIBUS-DPV1-Slave):

Parameters in black Read/write access
Parameters in gray Read-only access

The following parameters are provided in the PROFIBUS Configuration tab:

Parameter Type Value Default value Description
InitParameters
BusAddr BYTE 2...126 2 PROFIBUS DP slave address.
BaudRate BYTE

Enum
0...15 15 PROFIBUS transmission rate:

 0 = 9600 Baud
 1 = 19.2 KBaud
 2 = 93.75 KBaud
 3 = 187.5 KBaud
 4 = 500 KBaud
 6 = 1500 KBaud
 7 = 3 MBaud
 8 = 6 MBaud
 9 = 12 MBaud
 10 = 31.25 KBaud
 11 = 45.45 KBaud
 15 = Auto, the transmission rate set on

the master is recognized by the slave.
EIO0000001909 03/2018 111

Communication Modules
WdgEnabled BOOL TRUE
FALSE

TRUE Enables the watchdog:
 TRUE = The watchdog is activated. The

value of the parameter WdgTime is
used as watchdog timeout.

 FALSE = The watchdog is deactivated.
The value of the parameter WdgTime is
ignored.

WdgTime UDINT 20...65535 100 Determines after which time a slave is
detected as incommunicative by the
watchdog. The time is given in ms.

DPV1Enable BOOL TRUE
FALSE

TRUE Enables the DPV1 functions for acyclic
communication:
 TRUE = The DPV1 mode is activated.
 FALSE = The DPV1 mode is

deactivated.
SyncSupported BOOL TRUE

FALSE
TRUE Enables the sync mode that supports the

sync command:
 TRUE = The sync mode is activated.
 FALSE = The sync mode is deactivated.

FreezeSupported BOOL TRUE
FALSE

TRUE Enables the freeze mode that supports the
freeze command:
 TRUE = The freeze mode is activated.
 FALSE = The freeze mode is

deactivated.
FailsafeSupport-
ed

BOOL TRUE
FALSE

TRUE Enables a proprietary "failsafe" mode if
supported by the device:
 TRUE = The mode is activated.
 FALSE = The mode is deactivated.

Internal
Reserved
Info
IdentNumber WORD 3424 3424 Displays the identification number of the

PROFIBUS DP slave module.
VendorName STRING ‘Schneider Electric’ ‘Schneider

Electric’
Displays the vendor name of the
PROFIBUS DP slave module.

ModelName STRING ‘PROFIBUS DPV1
slave’

‘PROFIBUS
DPV1 slave’

Displays the model name of the
PROFIBUS DP slave module.

DriverInstance DWORD 0 0 Displays the identifier for this driver
instance.

Parameter Type Value Default value Description
112 EIO0000001909 03/2018

Communication Modules
Diag / ChannelCommonStatusBlock
CommState UDINT

Enum
UNKNOWN / 0
NOT_
CONFIGURED / 1
STOP / 2
IDLE / 3
OPERATE / 4

UNKNOWN / 0 Displays the current network status of the
communication channel:
 0 = Indeterminable.
 1 = Not configured.
 2 = Stopped.
 3 = Idle.
 4 = Operational.

CommError UDINT
Enum

Diagnostic Codes
(see page 114)

SUCCESS /
0x0

Displays the current diagnostic code of the
communication channel.

ErrorCount UDINT - 0 Displays the total number of errors
detected since the last power-up or the last
restart.

Diag / ChannelExtentedStatusBlock
Baudrate UDINT

Enum
0...15 Baudrate_

AUTO / 15
Displays the applied baud rate.The
parameter displays the baud rate used by
the master if the value AUTO has been set
in the initialization parameter of the slave.
PROFIBUS transmission rate:
 0 = 9600 Baud
 1 = 19.2 KBaud
 2 = 93.75 KBaud
 3 = 187.5 KBaud
 4 = 500 KBaud
 6 = 1500 KBaud
 7 = 3 MBaud
 8 = 6 MBaud
 9 = 12 MBaud
 10 = 31.25 KBaud
 11 = 45.45 KBaud
 15 = Auto, the master has no

connection to the slave.

Parameter Type Value Default value Description
EIO0000001909 03/2018 113

Communication Modules
Diagnostic Codes
No error has been detected:

Runtime error has been detected:

Initialization errors have been detected:

Configuration errors have been detected:

Value Meaning
SUCCESS / 0x0 No error detected.

Value Meaning
WATCHDOG_TIMEOUT / 0xC000000C The watchdog time has been exceeded.

Value Meaning
INIT_FAULT / 0xC0000100 The initialization was not successful.
DATABASE_ACCESS_FAILED / 0xC0000101 Access to data memory was not successful.

Value Meaning
NOT_CONFIGURED / 0xC0000119 The module is not configured.
CONFIGURATION_FAULT / 0xC0000120 A configuration error has been detected.
INCONSISTENT_DATA_SET / 0xC0000121 Inconsistent set data have been detected.
DATA_SET_MISMATCH / 0xC0000122 A mismatch of set data has been detected.
INSUFFICIENT_LICENSE / 0xC0000123 An insufficient license has been detected.
PARAMETER_ERROR / 0xC0000124 A parameter error has been detected.
INVALID_NETWORK_ADDRESS / 0xC0000125 The network address is not correct.
SECURITY_MEMORY / 0xC0000126 The security memory is not available.
114 EIO0000001909 03/2018

Communication Modules
Network errors have been detected:

Value Meaning
COMM_NETWORK_FAULT / 0xC0000126 A network communication error has been

detected.
COMM_CONNECTION_CLOSED / 0xC0000141 The communication connection has been closed.
COMM_CONNECTION_TIMEOUT / 0xC0000142 A communication connection timeout has been

detected.
COMM_DUPLICATE_NODE / 0xC0000144 A duplicate node has been detected.
COMM_CABLE_DISCONNECT / 0xC0000145 A disconnected cable has been detected.
PROFIBUS_CONNECTION_TIMEOUT / 0xC009002E A PROFIBUS connection timeout has been

detected.
EIO0000001909 03/2018 115

Communication Modules
Acyclic Data Exchange

Registering for Callback
It is possible to register for a callback in the case of a noncyclical inquiry. If a noncyclical query of
the master is received by the PROFIBUS DPV1 slave driver, the query is first made to registered
data areas.
Then, all registered user function block (FB) instances are called up which have been registered
with the PROFIBUS DPV1 slave by using the interfaces IF_AsyncRead and IF_AsyncWrite.
At the same time, the state of the automatic inquiry processing is transferred as well, so that
possible problems can be responded to. The current status is then written into parameter
iq_stError.

To call up the AsyncRead method in the case of an incoming read query, an instance of the same
type as the function block that implements the IF_AsyncRead interface has to be registered with
the PROFIBUS DPV1 slave.
If the AsyncRead method of this function block instance is no longer to be called up when a
noncyclical read inquiry is received, the registration of the instance has to be removed.
NOTE: Use the method IsRegisteredAsyncRead to verify whether a certain function block
instance is already registered as callback with the PROFIBUS DPV1 slave.
A list of all relevant methods can be found here after.
NOTE: The IoDrvPROFIBUSDPV1Slave library is added to the library manager when you add
the module. This library contains the interfaces, methods, and function blocks for managing the
PROFIBUS DP module.

Relevant Methods for Callback Registration
This table lists the relevant methods for the registration of the PROFIBUS DP interface:

Method Description
IsRegisteredAsyncAlarmAck Returns whether the transferred function block is already registered for

the callback upon arrival of an alarm acknowledge.
IsRegisteredAsyncRead Returns whether the transferred function block is already registered for

the callback upon arrival of a noncyclical read inquiry.
IsRegisteredAsyncWrite Returns whether the transferred function block is already registered for

the callback upon arrival of a noncyclical read inquiry.
RegisterAsyncAlarmAck Registers the transferred function block instance for the callback with

the PROFIBUS slave upon arrival of an alarm acknowledge.
RegisterAsyncRead Registers the transferred function block instance for the callback with

the PROFIBUS slave upon arrival of a noncyclical read inquiry.
RegisterAsyncWrite Registers the transferred function block instance for the callback with

the PROFIBUS slave upon arrival of a noncyclical write inquiry.
116 EIO0000001909 03/2018

Communication Modules
Registering Noncyclical Data Areas
Data areas can be registered in the PROFIBUS DPV1 slave. Noncyclical queries (AsyncRead,
AsyncWrite) to registered data areas are then automatically processed by the PROFIBUS DPV1
slave. A slot and an index are required in order to address a noncylical data area.
In order to create a noncyclical module, the structure ST_PROFIBUSDPV1AsyncDataModule is
used. A slot and an index have to be entered into this structure as well as a pointer to a data area
and the length of the data at this address.
Ensure that the pointer pbyData points to a memory area that actually exists during runtime and
is not deleted. For this purpose, for example, declare the array as a variable in the program. The
data module structures do not have to be available permanently since the contents of the structure
are copied when registering the data module.
A list of all relevant methods can be found here after.

UnregisterAsyncAlarmAck Unregisters the transferred function block instance for the callback with
the PROFIBUS slave upon arrival of an alarm acknowledge.

UnregisterAsyncRead Unregisters the transferred function block instance for the callback with
the PROFIBUS slave upon arrival of a noncyclical read inquiry.

UnregisterAsyncWrite Unregisters the transferred function block instance for the callback with
the PROFIBUS slave upon arrival of a noncyclical write inquiry.

Method Description
EIO0000001909 03/2018 117

Communication Modules
Relevant Methods for Data Area Registration
This table lists the relevant methods for the registration of the data areas of the IF_PROFIBUS_D-
PV1_Slave interface:

Method Description
IsRegisteredDataModule Verifies whether the transferred data module is registered.

The return values are:
 0: No data module is registered on a certain slot and index.
 1: A data module is registered on a certain slot and index.
 2: The slot is invalid.
 3: The index is invalid.

RegisterAsyncDataModule Registers the transferred data module with a slot and an index.
The return values are:
 0: The data module is registered.
 1: The slot is invalid.
 2: The index is invalid.
 3: The pointer to the data area is 0.
 4: The length is invalid.
 5: The data module already exists.

UnregisterAllAsyncDataModules Removes registration of all registered data modules.
UnregisterAsyncDataModule Indicates why the transferred data module is unregistered.

The return values are:
 0: The data module has been unregistered.
 1: The slot is invalid.
 2: The index is invalid.
 3: The pointer to the data area is 0.
 4: The data module is not registered.

GetAsyncDataModule The data of a defined registered data module is read and
returned.
The return values are:
 0: The data module has been read out successfully.
 1: The slot is invalid.
 2: The index is invalid.
 3: No data module is registered with this slot and index.
118 EIO0000001909 03/2018

Communication Modules
EtherNet/IP Adapter Configuration

Section 10.2
EtherNet/IP Adapter Configuration

Introduction
This section describes how to configure the EtherNet/IP adapter service of the VW3E704100000
communication module.

What Is in This Section?
This section contains the following topics:

Topic Page
EtherNet/IP Adapter Configuration 120
Cyclic Data Exchange 124
Acyclic Data Exchange 125
EIO0000001909 03/2018 119

Communication Modules
EtherNet/IP Adapter Configuration

Introduction
This section describes the configuration of the EtherNet/IP adapter service.
The EtherNet/IP adapter supports the following exchange services:
 Cyclic data exchanges (see page 124)
 Acyclic data exchanges (see page 125)
For further information about EtherNet/IP (CIP), refer to the www.odva.org website.

Adding the EtherNet/IP Adapter
To add the EtherNet/IP adapter to your controller, select EtherNet-IP-Adapter in the Hardware
Catalog, drag it to the Devices tree and drop it on your controller node.
NOTE: The InputArea and OutputArea nodes are added to the EtherNet/IP adapter node. These
two I/O modules are used for cyclical communication.
120 EIO0000001909 03/2018

Communication Modules
Ethernet/IP Adapter Configuration
To access the EtherNet/IP adapter parameters, double-click EtherNet-IP-Adapter in the Devices
tree:

Parameters in black Read/write access
Parameters in gray Read-only access

The following parameters are provided in the EtherNet/IP Configuration tab:

Parameter Type Value Default value Description
Internal
Reserved
EIO0000001909 03/2018 121

Communication Modules
InitParameters
IPAddressConfig BYTE

Enum
manual / 0
enable BOOTP / 1
enable DHCP / 2

manual / 0 Defines how the IP address of the
module is set:
 0 = Manually entered IP address is

used.
 1 = IP address is determined from

the bootstrap protocol.
 2 = IP address is determined from

the DHCP protocol.
IPAddress STRING ‘10.128.234.33’ ‘10.128.234.33’ Specifies the IP address of the

EtherNet/IP adapter.
IPSubnetMask STRING ‘255.255.240.0’ ‘255.255.240.0’ Specifies the subnet mask of the

EtherNet/IP adapter.
IPGateway STRING ‘10.128.224.10’ ‘10.128.224.10’ Specifies the gateway address of the

EtherNet/IP adapter.
EthernetAddress STRING “ “ Displays the MAC address of the

EtherNet/IP adapter.
EthernetConfig BYTE

Enum
Auto-negotiation / 0
Full Duplex /
100 Mbit/s / 1
Full Duplex /
10 Mbit/s / 2
Half Duplex /
100 Mbit/s / 3
Half Duplex /
10 Mbit/s / 4

Auto-negotiation / 0 Displays the Ethernet configuration of
the EtherNet/IP adapter:
 0 = If this value is set, the device

independently negotiates the
connection parameters with the
remote hub or the switch.

 1 = The device works at 100 Mbit/s
and in full duplex.

 2 = The device works at 10 Mbit/s
and in full duplex.

 3 = The device works at 100 Mbit/s
and in half duplex.

 4 = The device works at 10 Mbit/s
and in half duplex.

InputLength UDINT 1...504 504 Defines the size of the input data of the
cyclical data transfer in bytes
(InputArea module in the Devices
tree).

OutputLength UDINT 1...504 504 Defines the size of the output data of
the cyclical data transfer in bytes
(OutputArea module in the Devices
tree).

Parameter Type Value Default value Description
122 EIO0000001909 03/2018

Communication Modules
WdgEnabled BOOL TRUE
FALSE

FALSE Enables the watchdog:
 TRUE = The watchdog is activated.

The value of the parameter
WdgTime is used as watchdog
timeout.

 FALSE = The watchdog is
deactivated. The value of the
parameter WdgTime is ignored.

WdgTime UDINT 20...65535 100 Determines after which time a slave is
detected as incommunicative by the
watchdog. The time is given in ms.

Info
IdentNumber WORD 0 0 Displays the identification number of

the EtherNet/IP adapter.
VendorName STRING ‘Schneider Electric’ ‘Schneider Electric’ Displays the vendor name of the

EtherNet/IP adapter.
ModelName STRING ‘EtherNet/IP-

Adapter’
‘EtherNet/IP-
Adapter’

Displays the model name of the
EtherNet/IP adapter.

DriverInstance DWORD 0 0 Displays the identifier for this driver
instance.

Diag / ChannelCommonStatusBlock
CommState UDINT

Enum
UNKNOWN / 0
NOT_
CONFIGURED / 1
STOP / 2
IDLE / 3
OPERATE / 4

UNKNOWN / 0 Displays the current network status of
the communication channel:
 0 = Indeterminable.
 1 = Not configured.
 2 = Stopped.
 3 = Idle.
 4 = Operational.

CommError UDINT
Enum

Diagnostic Codes
(see page 114)

SUCCESS / 0x0 Displays the current diagnostic code of
the communication channel.

ErrorCount UDINT - 0 Displays the total number of errors
detected since the last power-up or the
last restart.

Parameter Type Value Default value Description
EIO0000001909 03/2018 123

Communication Modules
Cyclic Data Exchange

Instance ID of the Input/Output Areas
The input and output areas have the following instance ID:

The number of exchanged data depends on the parameters InputLength and OutLength
configured in the Ethernet/IP Configuration (see page 121).
NOTE: Output means OUTPUT from master (= %IW for the module).
Input means INPUT from master (= %QW for the module).

I/O Modules of the EtherNet/IP Adapter
The InputArea and OutputArea nodes are added to the EtherNet/IP adapter node when you add
the module. These two I/O modules are used for cyclical communication.
The data length of the 2 inserted I/O modules corresponds to the maximum data length for cyclical
communication (504 bytes).
If, for example, InputLength is set to 50 and OutputLength is set to 20, the first 50 bytes in
the I/O module InputArea and the first 20 bytes in the I/O module OutputArea are cyclically
exchanged with the scanner.
The remaining 454 (504-50) input bytes and 484 (504-20) output bytes in the I/O modules are not
used.

EtherNet/IP Modules I/O Mapping
Double-click the InputArea or OutputArea node in the Devices tree
Variables can be defined and named in the EthernetIP-Modules I/O Mapping tab. Additional
information such as topological addressing is also provided in this tab.
For further generic descriptions, refer to I/O Mapping Tab Description (see SoMachine,
Programming Guide).

Element Instance ID Size (bytes) Description
Input assembly
(InputArea)

101 0...504 Command word of master controller outputs (%QW)

Output assembly
(OutputArea)

100 0...504 State of master controller inputs (%IW)
124 EIO0000001909 03/2018

Communication Modules
Acyclic Data Exchange

Registering for Callback
With the EtherNet/IP adapter it is possible to register for a callback in the case of a noncyclical
inquiry. If a noncyclical inquiry of the scanner is received by the EtherNet/IP adapter driver, the
inquiry is first passed on to registered data areas.
Then, all registered user function block (FB) instances are called up which have been registered
with the EtherNet/IP adapter by using the interfaces IF_EIPEventHandler_AsyncGetAt-
tributeAll, IF_EIPEventHandler_AsyncGetAttributeSingle and
IF_EIPEventHandler_AsyncSetAttributeSingle. At the same time, the state of the
automatic inquiry processing is transferred as well, so that possible problems can be responded
to. The current status is then written into parameter iq_udiError.

NOTE: The RegisterAsyncClass() method has to be called up in order to obtain the callbacks
of a certain class in the callback method.
NOTE: If noncyclical data areas are registered, this method is automatically executed internally. In
this case, you do not need to call up the RegisterAsyncClass() method manually.

A list of all relevant methods can be found here after.
NOTE: The IoDrvEtherNetIPAdapter library is added to the library manager when you add
the module. This library contains the interfaces, methods, and function blocks for managing the
EtherNet/IP module.

Relevant Methods for Callback Registration
This table lists the relevant methods for the registration of the data areas of the IF_EtherNet-
IP_Adapter interface:

Method Description
IsRegisteredAsyncGetAttributeAll Returns whether the transferred function block is already registered for

the callback upon arrival of a GetAttributeAll inquiry.
IsRegisteredAsyncGetAttributeS-
ingle

Returns whether the transferred function block is already registered for
the callback upon arrival of a GetAttributeSingle inquiry.

IsRegisteredAsyncSetAttributeS-
ingle

Returns whether the transferred function block is already registered for
the callback upon arrival of a SetAttributeSingle inquiry.

RegisterAsyncGetAttributeAll Registers the transferred function block for the callback in the case of
GetAttributeAll inquiries.

RegisterAsyncGetAttributeSingle Registers the transferred function block for the callback in the case of
GetAttributeSingle inquiries.

RegisterAsyncSetAttributeSingle Registers the transferred function block for the callback in the case of
SetAttributeSingle inquiries.
EIO0000001909 03/2018 125

Communication Modules
Registering Noncyclical Data Areas
Data areas for noncyclical inquiries can be registered with the EtherNet/IP adapter. Noncyclical
inquiries (Get_Attribute_All, Get_Attribute_Single and Set_Attribute_Single) to
registered data areas are then automatically processed by the EtherNet/IP adapter. A noncyclical
data area is addressed by using a ClassId, an InstanceId and an AttributeId.

For this purpose, an attribute of type ST_EtherNetIPAttribute has to be created. This attribute has
to contain the following program contents: an Id, a length, and a pointer to a data area (for example,
an array).
Ensure that the area to which the pointer of an attribute points actually exists during operation and
is not deleted. For this purpose, for example, declare the array as a variable in the program.
By using the interface IF_EtherNetIPInstance, the attribute is then registered with an instance
of the function block FB_EtherNetIPInstance

NOTE: Ensure that the instances of the function block FB_EtherNetIPInstance as well as the
attributes are available permanently and not accidentally deleted during operation (for example,
local variables of a method are deleted upon completion of the method).
In order to register the instance with the EtherNet/IP adapter, the created noncyclical instance has
to contain a ClassId and an InstanceId.

These can be set using the methods SetClassId and SetInstanceId.

The instances are registered by using the IF_EtherNetIP_Adapter interface of the Ethernet/IP
adapter.
A list of all relevant methods can be found here after.

UnregisterAsyncGetAttributeAll Unregisters the transferred function block for the callback in the case
of GetAttributeAll inquiries.

UnregisterAsyncGetAttributeSing-
le

Unregisters the transferred function block for the callback in the case
of GetAttributeSingle inquiries.

UnregisterAsyncSetAttributeSing-
le

Unregisters the transferred function block for the callback in the case
of SetAttributeSingle inquiries.

RegisterAsyncClass Enables the callbacks for the transferred ClassId. Only when the
callbacks for a certain ClassId have been activated, the code
registered for the callbacks is called up.
The return values are:
 0: The ClassId has been registered successfully.
 1: The ClassId is already registered.
 : The ClassId is invalid.
 3: The inquiry RegisterAsyncClass request cannot be sent.
 4: The inquiry RegisterAsyncClass request was not correct.

Method Description
126 EIO0000001909 03/2018

Communication Modules
Relevant Methods for Data Area Registration
This table lists the relevant methods for the registration of the data areas of the IF_EtherNet-
IP_Adapter and IF_EtherNetIPInstance interfaces:

Method Description
IF_EtherNetIP_Adapter interface
RegisterInstance Registers the instance with the EtherNet/IP adapter.

The return values are:
 0: Instance is registered.
 1: Instance is already registered.
 2: The instance is invalid.
 3: Internal error.

UnregisterAllInstances Unregisters all instances that have been registered with the
EtherNet/IP adapter.
The return values are:
 0: All registrations have been removed.
 1: Internal error.
 2: There are no registered instances.
 3: Internal error.

UnregisterInstance Unregisters a defined instance in the EtherNet/IP adapter.
The return values are:
 0: The registration has been made void.
 CmpErrors.Errors.ERR_NO_OBJECT: The last instance was

not found.
 CmpErrors.Errors.ERR_INVALID_HANDLE: Internal error.

IF_EtherNetIPInterface interface
SetClassId Assigns a ClassId to an instance of the function block

FB_EtherNetIPInstance.
The return values are:
 0: The ClassId is valid and set.
 1: The ClassId is not between Gc_EtherNetIPClass_MinID

and Gc_EtherNetIPClass_MaxID.
SetInstanceId Assigns a InstanceId to an instance of the function block

FB_EtherNetIPInstance.
The return values are:
 0: The InstanceId is valid and set.
 1: The ClassId is not between 0 and

Gc_EtherNetIPClass_MaxID.
EIO0000001909 03/2018 127

Communication Modules
AddAttribute Adds the transferred attribute to the instance of the function block
FB_EtherNetIPInstance.
The return values are:
 0: The attribute has been added.
 1: The AttributeId is already used.
 2: The attribute is invalid.

AddAttributeArray Splits an array up into several parts that have the size of
i_byAttributeLength and adds every part as attribute to the
instance of the function block FB_EtherNetIPInstance. The
attributes IDs are numbered consecutively. The
o_byStartAttributeId returns the AttributeId of the first
added attribute. The length of the last added attribute may be less
than the transfer parameter i_byAttributeLength.
The return values are:
 0: All attributes have been added and no errors were detected.
 1: Not enough available space in the instance.

RemoveAttribute Removes an attribute with a defined ID.
The return values are:
 0: The attribute was removed successfully.
 CmpErrors.Errors.ERR_INVALIDID: The attribute was not

found.
RemoveAllAttributes Removes all attributes within the instance and returns the number of

removed attributes.
GetClassId Returns the ClassId.
GetInstanceId Returns the InstanceId.
GetAttribute Returns the data of the transferred attribute ID in the in/out parameter

iq_stAttribute.
Return value CmpErrors.Errors.ERR_INVALIDID: The attribute
was not found.

GetAttributeCount Returns the number of attributes.
GetInstanceFreeSize Returns the size of the free space of the instance.
IsValid Indicates whether the instance information is valid. For this purpose,

ClassID and InstanceID have to be set.

Method Description
128 EIO0000001909 03/2018

Communication Modules
GetFirstAttribute Returns the data of the first attribute of the instance in the in/out
parameter iq_stAttribute.
The return values are:
 0: Attributes have been found.
 1: No attributes have been found.

GetNextAttribute Returns the data of the next attribute of the instance in the in/out
parameter iq_stAttribute.
The return values are:
 0: Attributes have been found.
 1: No attributes have been found.

Method Description
EIO0000001909 03/2018 129

Communication Modules
Ethernet/IP Scanner Configuration

Section 10.3
Ethernet/IP Scanner Configuration

Introduction
This section describes how to configure the EtherNet/IP Scanner service of the VW3E704100000
Ethernet communication module.

What Is in This Section?
This section contains the following topics:

Topic Page
Presentation 131
Supported Devices 132
EtherNet/IP Scanner Configuration 134
EtherNet/IP Scanner I/O Mapping 136
EtherNet/IP Scanner Status and Diagnostics 137
Target Device Declaration 139
Target Settings 141
Connection Configuration 143
Device Replacement with User Parameters 159
EtherNet/IP I/O Mapping 163
130 EIO0000001909 03/2018

Communication Modules
Presentation

EtherNet/IP Overview
EtherNet/IP is the name given to the Common Industrial Protocol (CIP)-based protocol
implemented over standard Ethernet. For further information about CIP, refer to the www.odva.org
website.
EtherNet/IP uses an Originator/Target architecture for data exchange:
 Originators are devices that initiate data exchanges with target devices on the network. This

applies to both I/O communications and service messaging. This is the equivalent of the role of
a client in a Modbus network.

 Targets are devices that respond to data requests generated by originators. This applies to both
I/O communications and service messaging. This is the equivalent of the role of a server in a
Modbus network.

Communication between EtherNet/IP originators and targets is accomplished using EtherNet/IP
connections.

EtherNet/IP Scanner Features
The EtherNet/IP Scanner on the LMC078 Motion Controller is an originator device that establishes
connections to, and exchanges configuration information and input/output data with, target
devices. For example, the scanner might indicate to a target device how often the device should
transmit its input data and how often it expects output data from the scanner.
The following table presents the features of the EtherNet/IP Scanner service for the LMC078
Motion Controller:

Feature Description
Performance Up to 64 EtherNet/IP target devices managed by the controller,

monitored within a timeslot of 10 ms
Number of connections 1...64
Number of input words 0...5712. Maximum of 504 for each target device
Number of output words 0...5712. Maximum of 504 for each target device
I/O communications EtherNet/IP I/O scanner service

Function block for configuration and data transfer
Originator/Target

Other services EDS file management
EIO0000001909 03/2018 131

http://www.odva.org

Communication Modules
Supported Devices

Supported Devices
This table presents the target devices supported by the EtherNet/IP Scanner:

Device name TVDA Key features
Predefined
devices

Altivar 32 X Libraries, predefined connections, predefined data exchanges
Altivar 320 X Libraries, predefined connections, predefined data exchanges
Altivar 340 X Libraries, predefined connections, predefined data exchanges
Altivar 6•• X Libraries, predefined connections, predefined data exchanges
Altivar 71 X Libraries, predefined connections, predefined data exchanges
Altivar 9•• X Libraries, predefined connections, predefined data exchanges
Lexium 32 M X Libraries, predefined connections, predefined data exchanges
Lexium ILA X Libraries, predefined connections, predefined data exchanges
Lexium ILE X Libraries, predefined connections, predefined data exchanges
Lexium ILS X Lbraries, predefined connections, predefined data exchanges
OsiSense XG X Predefined connections, predefined data exchanges
OsiSense XUW X Predefined connections, predefined data exchanges
XPSMCM X Predefined connections, predefined data exchanges

Other
devices

Device provided
with EDS file(1)

- User parameters, predefined connections

Generic slave
device (2)

- User parameters

(1) An EDS file provides, among other things, predefined connections to facilitate network integration.
(2) A generic slave device is used in SoMachine to add EtherNet/IP devices that do not have predefined

connections, such as speed drives, sensors, or other controllers.
132 EIO0000001909 03/2018

Communication Modules
Key Features
This table presents the key features:

TVDA
Some devices are provided with application code templates (referred to as Device Modules) that
provide a way to integrate devices such as variable speed drives or servo drives in the SoMachine
project. The Device Modules are realized on function templates, a mechanism within SoMachine
to recall predefined application program contents.
Each Device Module embeds the SoMachine application content to control the field device, monitor
its status, and perform error management. It includes a separate global variable definition that
provides the interface to access the device functionalities across the SoMachine automation
project.
For more details, refer to TVDA Device Module Library, Function Template Library Guide
(see TVDA Device Module Library, Function Template Library Guide).

Key features Description
Libraries Functions and function blocks (dedicated to the device) available for use by the

application. Refer to the Motion Control Library Guide (see page 9).
Predefined
connections

Used to set up cyclic data exchanges. Select one of the proposed connections
containing the relevant information. For more information, refer to Connection
Configuration (see page 143).

Predefined data
exchanges

The cyclic data exchanges are set automatically: one predefined connection is
automatically selected when you add the device to the project.

User parameters Parameters that are sent automatically to the device at power-up. These parameters
are used when replacing devices that do not support FDR.
EIO0000001909 03/2018 133

Communication Modules
EtherNet/IP Scanner Configuration

Adding the EtherNet/IP Scanner
To add the EtherNet/IP scanner to your controller, select Ethernet IP Scanner board in the
Hardware Catalog, drag it to the Devices tree and drop it on your controller node.
For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)

EtherNet/IP Scanner Configuration
To configure the EtherNet/IP Scanner, double-click the EtherNet IP Scanner node in the Devices
tree:
134 EIO0000001909 03/2018

Communication Modules
The following parameters are provided in the Scanner Settings tab:

Parameter Default value Description
IP Address 192.168.0.1 Specify the IP address of the EtherNet/IP Scanner.
Subnet Mask 255.255.255.0 Specify the subnet mask of the EtherNet/IP Scanner.
Gateway Address 0.0.0.0 Specify the gateway address of the EtherNet/IP Scanner.
Speed&Duplex Auto-negotiation Select the data transmission direction and speed of the

EtherNet/IP Scanner:
Auto-negotiation. The scanner independently negotiates the
connection parameters with the remote hub or switch.
Full Duplex /100 Mbit/s. The scanner works at 100 Mbit/s and in
full duplex.
Full Duplex /10 Mbit/s. The scanner works at 10 Mbit/s and in
full duplex.
Half Duplex /100 Mbit/s. The scanner works at 100 Mbit/s and
in half duplex.
Half Duplex /10 Mbit/s. The scanner works at 10 Mbit/s and in
half duplex.
EIO0000001909 03/2018 135

Communication Modules
EtherNet/IP Scanner I/O Mapping

Configuring the EtherNet/IP Scanner I/O Mapping
I/O bus configuration allows you to select the task that controls EtherNet/IP cyclic data exchanges.
To configure the EtherNet/IP Scanner I/O mapping, proceed as follows:

Step Action
1 In the Devices tree, double-click EtherNet IP Scanner.

Result: The configuration window is displayed.
2 Select the EtherNet/IP I/O Mapping tab.

3 The Bus cycle task parameter defines the task responsible for refreshing the I/O images
(%QB, %IB). These I/O images correspond to the EtherNet/IP requests sent to the target devices
and the health bits.
Select the Bus cycle task to use:
 Use parent bus cycle setting (the default). Use the task specified in the PLC Settings

(see page 88) tab of the controller.
 MAST. Use the MAST task (see page 49).
 Motion. Use the Motion task (see page 42).
136 EIO0000001909 03/2018

Communication Modules
EtherNet/IP Scanner Status and Diagnostics

Introduction
In online mode, the Status tab of the EtherNet/IP Scanner provides monitoring and diagnostics
information for the EtherNet/IP Scanner and connected devices.

Displaying Monitoring and Diagnostics Information

Step Action
1 In the Devices tree, double-click EtherNet IP Scanner.
2 Select the Status tab.

Result: The Last Diagnostic Message window is displayed:
EIO0000001909 03/2018 137

Communication Modules
Diagnostics Information
The CommunicationCOS field is a binary-coded decimal value:

For example, for a value of CommunicationCOS of 143 (Operational State), the following bits are
set to 1:
 Bit 0 (Communication ready)
 Bit 1 (Configuration performed correctly)
 Bit 2 (Protocol open for communication)
 Bit 3 (Configuration locked)
 Bit 7 (Direct Memory Access enabled)

Bit Description when the bit is set to 1
0 Communication ready
1 Configuration performed correctly
2 Protocol open for communication
3 Configuration locked
4 New configuration
5 Communication restart requested
6 Communication restart enabled
7 Direct Memory Access enabled
8...31 Not used
138 EIO0000001909 03/2018

Communication Modules
Target Device Declaration

Overview
This section describes how to add a target device on the EtherNet/IP Scanner.
The available target devices are listed in Supported Devices (see page 132).

Automatic Settings
During each target device declaration, SoMachine automatically:
 Sets the network settings (IP address, subnet mask, gateway address) in accordance with the

EtherNet/IP Scanner IP settings (see page 134).
 For predefined devices, creates predefined data exchanges.

Adding a Target Device
To add a target device on the Ethernet-IP-Scanner node, select the device in the Hardware
Catalog, drag it to the Devices tree, and drop it on the Ethernet-IP-Scanner node.
For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)
Depending on the target device you add to your project, some libraries may be loaded
automatically. Refer to the Motion Control Library Guide (see page 9) for the available function
blocks.

Adding a Target Device from a Template
For devices that do not have key features but support TVDA, it is possible to declare them using a
template. This imports additional elements to facilitate program writing.
Use this method for OsiSense XGCS, XUW, and Preventa XPSMCM devices.
To add a device from a template, proceed as follows:

For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)

Step Action
1 In the Hardware Catalog, select the Device Template check box.
2 Select the device in the Hardware Catalog, drag it to the Devices tree, and drop it on the

Ethernet-IP-Scanner node.
EIO0000001909 03/2018 139

Communication Modules
Adding a Target Device from an EDS File
Some third-party devices are delivered with an EDS file.
To add a device with an EDS file, proceed as follows:

Step Action
1 In the SoMachine menu, select Tools → Device Repository.
2 Click Install to open the Device description files dialog box.
3 Select EDS and DCF files in the file type list.
4 Select the EDS file.
5 Click OK to close the dialog box.
6 Click Close to close the Install Device Description dialog box.
7 Select the Ethernet-IP-Scanner and click the Plus button. Select the newly added target device

and click Add Device. For more details, refer to Using the Contextual Menu or Plus Button
(see SoMachine, Programming Guide)
140 EIO0000001909 03/2018

Communication Modules
Target Settings

Overview
Once a target device has been added in the EtherNet/IP Scanner, use the Target Settings tab of
the device to edit the network settings of the device.

Target Device Settings
In the Devices tree, double-click an EtherNet/IP target device node:
EIO0000001909 03/2018 141

Communication Modules
Address Settings
Target devices added to the EtherNet/IP Scanner must have a fixed IP address.
Enter the IP address of the device in the IP Address field.
If replacing a device:

Electronic Keying
Electronic Keying signatures are used to identify the device.
Electronic Keying is information contained in the firmware of the device (Vendor Code, Product
Code, and so on).
When the scanner starts, it compares each selected electronic keying value with the corresponding
information in the device.
If the device values are not the same as the application values, the logic controller no longer
communicates with the device. This can be monitored within your application via diagnostic
information (see page 137) in order to take appropriate actions within the context of your machine.
For pre-configured devices, you cannot modify the Electronic Keying values.
For generic EtherNet/IP devices, you can modify the Electronic Keying values.
For Electronic Keying values, refer to the Identity Object (F1 hex) description in the documentation
of the device.

Step Action
1 Install the new device.
2 In the device, configure the network settings (IP address, subnet mask, and gateway address).
3 Configure the parameters in the device directly or using SoMachine.
4 Power up the device and launch the application.
142 EIO0000001909 03/2018

Communication Modules
Connection Configuration

Connection Overview
To access an EtherNet/IP device, it is necessary to configure connections. A connection allows the
exchange of blocks of data combined into assemblies.
The starting and stopping of connections is managed by the controller.

Assemblies
I/O data and configuration data can be combined into Assembly Objects.
Data (attributes) from different objects can be combined into a single object to allow data to be sent
or received over a single connection.
Assembly Object instances are used to aggregate data for the input data and output data
associated with I/O connections.
Assembly objects are structured into classes, instances, and attributes:
 A class is a set of objects that represent the same kind of system component.
 An object instance is the representation of a particular object within a class. Each instance has

its own set of attribute values.
 Attributes are characteristics of an object and/or an object class. Typically, attributes provide

status information or define the operation of an object.
The following graphic presents the directionality of Input Assembly and Output Assembly in
EtherNet/IP communications:

The EtherNet/IP configuration parameters are defined as:
 Instance: Number referencing the assembly.
 Size: Number of channels of an assembly.

The memory size of each channel is 2 bytes, which store the value of %IBx or %QBx objects,
where x is the channel number.

For example, if the Size of the Output Assembly is 20, there are 20 input channels (IB0…IB19)
addressing %IBy…%IB(y+20-1), where y is the first available channel for the assembly.
EIO0000001909 03/2018 143

Communication Modules
Configuring Device Connections
To create and configure connections, double-click an EtherNet/IP target device in the Devices tree
and select the Connections tab:

To create a connection, click Add Connection. See “Adding an EtherNet/IP Connection” that
follows.
To modify a connection, select a connection and click Edit Connection, or double-click on it.
To remove a connection, select a connection and click Delete Connection.

Column Comment
Connection N° The connection number is unique. It is automatically assigned by

SoMachine.
Connection Name The default connection name is generated automatically by SoMachine. For

predefined connections (see page 132), this name cannot be edited. For
other connections, the default connection name can be edited on the Edit
Connect window (see page 154).

RPI O-->T (ms) Requested Packet Interval: The time period between cyclic data
transmissions requested by the EtherNet/IP Scanner (O --> T) or by the
target device (T --> O).

RPI T-->O (ms)

O-->T size (byte) Number of bytes to exchange between the Originator (O) and the Target (T).
T-->O size (byte)
Config#1 size (byte) Size of the first set of configuration parameters. Only displayed for devices

with configurable parameters.
Config#2 size (byte) Size of the second set of configuration parameters. Only displayed for

device with configurable parameters.
Connection Path Coded transcription of the other connection parameters.
144 EIO0000001909 03/2018

Communication Modules
Adding an EtherNet/IP Connection
To create and configure a connection, proceed as follows:

Step Action
1 In the Devices tree, double-click an EtherNet/IP target device.
2 Select the Connections tab.
3 Click Add Connection.
4 Select generic connection (free configurable):

(1) The Class ID, Instance ID, and Attribute ID can be found in the device documentation.
EIO0000001909 03/2018 145

Communication Modules
5 Select generate path automatically and configure the Configuration Assembly:
 Class ID (4 by default): Class identifier(1)

 Instance ID: Instance identifier(1)

 Attribute ID (3 by default): Attribute identifier(1)

6 Configure the Consuming Assembly (O --> T):
 Class ID (4 by default): Class identifier(1)

 Instance ID: Instance identifier(1)

 Attribute ID (3 by default): Attribute identifier(1)

7 Configure the Producing Assembly (T --> O):
 Class ID (4 by default): Class identifier(1)

 Instance ID: Instance identifier(1)

 Attribute ID (3 by default): Attribute identifier(1)

Step Action

(1) The Class ID, Instance ID, and Attribute ID can be found in the device documentation.
146 EIO0000001909 03/2018

Communication Modules
8 Configure the Generic Parameters:
 Connection Name. The default connection name is generated automatically by SoMachine.

For generic connections, the default name “generic connection” can be edited.
 Connection Path. Coded transcription of the physical link object. Can be edited for generic

connections.
 Trigger Type. Select how the exchange of data is initiated:
 Cyclic: Endpoints exchange data at regular, predetermined time intervals.
 Change of state: Endpoints only exchange data when the data changes. To keep the

connection from timing out if no changes occur, the data is also exchanged at the
background cyclic interval (see RPI below).
When Change of state is selected, the Inhibit Time (ms) fields of the scanner-to-target
and target-to-scanner connection properties are enabled.

 Application. The exchange of data is triggered by an application.

 Transport Type:
 Exclusive Owner: This is a bidirectional connection to an output connection point

(typically an Assembly Object), where the data of this assembly can only be controlled
by one scanner. There may be a connection to an input assembly; this data is being sent
to the scanner.

 Listen Only: The scanner receives input data from the target device and produces a
Heartbeat to the target device. There is no output data. A Listen Only connection can
only be attached to an existing Exclusive Owner or Input Only connection. If this
underlying connection stops, then the Listen Only connection is also stopped or timed
out.

 Input Only: The scanner receives input data from the target device and produces a
Heartbeat to the target device. There is no output data.

 RPI (ms) Requested Packet Interval. The time period between cyclic data transmissions
requested by the scanner. Target devices always provide a minimum RPI, whereas in the
controller the goal is to have the highest RPI in order to not overload the system. Each time
a device is added to the EtherNet/IP fieldbus, or each time an RPI value is modified, verify
the level of controller resources used by the target devices. The device RPI may be
specified in the device documentation, but is usually provided as part of the EDS file
delivered with the device.

 Select the Timeout Multiplier: 4 (default) / 8 / 16 / 32 / 64 / 128 / 256 / 512. The selected
value is multiplied by the RPI value to obtain the connection time-out value.

Step Action

(1) The Class ID, Instance ID, and Attribute ID can be found in the device documentation.
EIO0000001909 03/2018 147

Communication Modules
For more details on supported assemblies, refer to the documentation of the device.
NOTE: Due to the O --> T Size (Bytes) and T --> O Size (Bytes) limitations and the maximum
input/output words (see page 131) of the scanner, verify the scanner resources load after adding
a connection.

9 Configure Scanner to Target (Output)-specific parameters:
 O --> T Size (Bytes): Number of bytes to transfer.
 Config#1 Size (Bytes): Number of parameters in the first set of configuration parameters.
 Config#2 Size (Bytes): Number of parameters in the second set of configuration

parameters.
 Connection Type. Connection type to use:
 Multicast. Connection is between the scanner and multiple target devices.
 Point to Point. Connection is between the scanner and a single target device.

 Fixed/Variable. Whether the amount of data transmitted is always the same (Fixed) or only
the exact amount of buffered data is transmitted (Variable).

 Transfer Format. The real-time data format to use on the connection:
 32 Bit Run/Idle. A 32-bit packet header includes run/idle notification.
 pure Data. No run/idle notification.
 Heartbeat. No run/idle notification.
 Idle with zero length. Zero-length data format indicates idle.

For details, refer to the OVDA website.
 Inhibit Time (ms): Minimum period of time between 2 data exchanges. Accessible only if

Trigger Type is Change of state. The value must be a multiple of 2 ms. The maximum value
is the RPI (ms) value, up to a maximum possible value of 254 ms.

10 Configure Target to Scanner (Input)-specific parameters:
 T --> O Size (Bytes): Number of bytes to transfer.
 Connection Type. Connection type to use:
 Multicast. Connection is between the target and multiple scanners.
 Point to Point. Connection is between the target and a single scanner.

 Fixed/Variable. Whether the amount of data transmitted is always the same (Fixed) or only
the exact amount of buffered data is transmitted (Variable).

 Consuming Assembly (O --> T)
 Inhibit Time (ms): Minimum period of time between 2 data exchanges. Accessible if Trigger

Type is Change of state. The value must be a multiple of 2 ms. The maximum value is the
RPI (ms) value, up to a maximum possible value of 254 ms.

11 Click OK.

Step Action

(1) The Class ID, Instance ID, and Attribute ID can be found in the device documentation.
148 EIO0000001909 03/2018

http://www.odva.org

Communication Modules
Add a Predefined Connection
Predefined connections (refer to Supported Devices (see page 131)) are available for:
 Predefined devices
 Other devices that are delivered with an EDS file.
By definition, generic slave devices do not have predefined connections.
To add a predefined connection, proceed as follows:

Step Action
1 In the Devices tree, double-click an EtherNet/IP target device.
2 Select the Connections tab.
3 Click Add Connection.
4 Select predefined connection (EDS-File):
5 Select one of the predefined connections:
EIO0000001909 03/2018 149

Communication Modules
Configuring a Configuration Assembly
Some devices support a configuration assembly.
A configuration assembly is a single request, sent when the EtherNet/IP Scanner starts up, that
sends all configuration parameters to the target device.
To configure a configuration assembly, proceed as follows:

6 Configure the Generic Parameters:
 RPI (ms) Requested Packet Interval. The period of time between cyclic data transmissions

requested by the scanner. The default value is defined in the EDS.
 Select the Timeout Multiplier: 4 (default) / 8 / 16 / 32 / 64 / 128 / 256 / 512. The selected

value is multiplied by the RPI value to obtain the connection time-out.
7 Configure the Scanner to Target (Output):

 O --> T Size (Bytes): Number of bytes to transfer.

8 Configure the Target to Scanner (Input):
 T --> O Size (Bytes): Number of bytes to transfer (Number of channels of the assembly)
 Select the Connection Type: Multicast (the default) if the connection is between the scanner

and multiple target devices, or Point-to-Point if the connection is between the scanner and
a single target device. Only editable for certain types of Transport Type.

9 Click OK.
Result: The connection is added to the Connections tab.

Step Action

Step Action
1 In the Devices tree, double-click an EtherNet/IP device.
2 Select the Connections tab.
3 Select an existing connection and click Edit Connection.
4 Select generic connection (free-configurable).
5 Select Configuration Assembly.
6 Configure the Configuration Assembly:

 Class ID (4 by default): Class identifier(1)

 Instance ID: Instance identifier(1)

 Attribute ID (3 by default): Attribute identifier(1)

7 Configure the Scanner to Target (Output):
 Config#1 Size (Bytes): Number of parameters in the first set of configuration parameters.
 Config#2 Size (Bytes): Number of parameters in the second set of configuration

parameters.
150 EIO0000001909 03/2018

Communication Modules
8 Click OK.
Result: The configuration parameters are displayed in the Connections tab:

9 Double-click in the Value column to set the configuration parameter values.
(1) The Class ID, Instance ID, and Attribute ID can be found in the device documentation. Refer to How To
Find Assembly Information (see page 158).

Step Action
EIO0000001909 03/2018 151

Communication Modules
Editing Predefined Connections
To edit a predefined connection, select the connection in the Connections tab and click Edit
Connection:

Parameter Description
Generic Parameters
RPI (ms) RPI (ms) Requested Packet Interval. The time period between cyclic data transmissions

requested by the scanner. The device always provides a minimum RPI, whereas in the
controller the goal is to have the highest RPI in order to not overload the system. Each
time a device is added to the EtherNet/IP fieldbus, or each time an RPI value is modified,
verify the resources used by the target devices. The device RPI may be specified in the
device documentation but is usually provided as part of the EDS file delivered with the
device.

Timeout Multiplier Select the Timeout Multiplier: 4 (default) / 8 / 16 / 32 / 64 / 128 / 256 / 512. The selected
value is multiplied by the RPI value to obtain the connection time-out value.
152 EIO0000001909 03/2018

Communication Modules
Scanner to Target (Output)
O --> T Size
(Bytes)

Size of channel for an assembly.
The memory size of each channel is 2 bytes that stores the value of %IWx or %QWx
object, where x is the channel number.

Target to Scanner (Input)
T --> O Size
(Bytes)

T --> O Size (Bytes): Number of bytes to transfer (Number of channels of the assembly)
The memory size of each channel is 2 bytes that stores the value of %IWx or %QWx
object, where x is the channel number.

Connection Type Connection type of the request:
 Multicast (the default) if the connection is between the scanner and multiple target

devices
 Point-to-Point if the connection is between the scanner and a single target device

Only editable for certain types of Transport Type.
Inhibit Time (ms) Minimum period time between 2 data exchanges.

Accessible if Trigger Type is Change of state. Inhibit Time maximum value is RPI and is
limited to 254 ms.

Parameter Description
EIO0000001909 03/2018 153

Communication Modules
Editing Generic Connections
To edit a generic connection, select the connection in the Connections tab and click Edit
Connection:
154 EIO0000001909 03/2018

Communication Modules
Proceed as follows:

Parameter Values Description
Connection Path Settings
Generate path automatically Yes/No Enables you to configure the parameters of

the assemblies.
Configuration
assembly

True/False Enables you to configure a configuration
assembly (see page 158).

Class ID 2 bytes (04h by default) Class identifier(1)

Instance ID 2 bytes (0 by default) Instance identifier(1)

Attribute ID 2 bytes (03h by default) Attribute identifier(1)

Consuming Assembly (O --> T)
Class ID 2 bytes (04h by default) Class identifier(1)

Instance ID 2 bytes (0 by default) Instance identifier(1)

Attribute ID 2 bytes (03h by default) Attribute identifier(1)

Producing Assembly (T --> O)
Class ID 2 bytes (04h by default) Class identifier(1)

Instance ID 2 bytes (0 by default) Instance identifier(1)

Attribute ID 2 bytes (03h by default) Attribute identifier(1)

User-defined path Yes/No Disable the Generate path automatically area
and enable the Connection Path field.

Generic Parameters
Connection Name Text string Type the name of the generic connection. The

default value is generic connection.
Connection Path Array of bytes Coded transcription of the physical link object

if generate path automatically is selected.
Editable if user-defined path is selected.

(1) The Class ID, Instance ID, and Attribute ID can be found in the device documentation. Refer to How To
Find Assembly Information (see page 158).
EIO0000001909 03/2018 155

Communication Modules
Trigger Type  Cyclic (default)
 Change of state
 Application

Select how the exchange of data is initiated:
 Cyclic: Endpoints exchange data at

regular, predetermined time intervals.
 Change of state: Endpoints only exchange

data when the data changes. To keep the
connection from timing out, the data is
also exchanged at the background cyclic
interval (see RPI below) if no changes
occur.
When Change of state is selected, the
Inhibit Time (ms) fields of the scanner-to-
target and target-to-scanner connection
properties are enabled.

 Application. The exchange of data is
triggered by the application.

Transport Type  Exclusive Owner (default)
 Redundant Owner

Exclusive Owner: This is a bidirectional
connection to an output connection point
(typically an Assembly Object), where the
data of this assembly can only be controlled
by one Scanner. There may be a connection
to an input assembly; this data is being sent
to the scanner. If the input data length is zero,
then this direction becomes a Heartbeat
connection.
Redundant Owner. Allows multiple separate
originator applications to each establish an
independent, identical connection to the
transport of a target device.

RPI (ms) In ms (10 ms by default) Requested Packet Interval. The time period
between cyclic data transmissions requested
by the scanner.
The device RPI may be specified in the
device documentation. Usually, however, this
information is provided as part as the EDS file
delivered with the device.

Timeout Multiplier 4 (default) / 8 / 16 / 32 / 64 /
128 / 256 / 512

Scanner timeout is managed on a per-
connection basic by multiplying the RPI and
timeout multiplier values.

Parameter Values Description

(1) The Class ID, Instance ID, and Attribute ID can be found in the device documentation. Refer to How To
Find Assembly Information (see page 158).
156 EIO0000001909 03/2018

Communication Modules
Scanner to Target (Output)
O --> T Size (Bytes) 0 to XX => device specific Size of channel for an assembly.

The memory size of each channel is 2 bytes,
which store the value of %IWx or %QWx
objects, where x is the channel number.

Config#1 Size (Bytes) 0 to XX => device specific Accessible if connection path contains a
configuration assembly.
Number of parameters (1 byte) to transfer.
The configuration values are sent to the
device at the scanner start.

Config#2 Size (Bytes) 0 to XX => device specific

Connection Type Point to Point Connection type of the request
Fixed/Variable Fixed The request length is fixed.
Transfer format  32 bit Run-idle (by default)

 pure Data
 Heartbeat

Transfer format of the request. For more
information, refer to ODVA website.

Inhibit Time 0 ms Minimum period time between 2 data
exchanges.

Targer to Scanner (Input)
T --> O Size (Bytes) 0 to XX => device specific Size of channel of an assembly.

The memory size of each channel is 2 bytes
that stores the value of %IWx or %QWx object,
where x is the channel number.

Connection Type  Multicast (default)
 Point to Point

Connection type of the request

Fixed/Variable Fixed The request length is fixed.
Transfer format  32 Bit Run Idle

 pure Data (by default)
 Heartbeat
 Idle with zero length

Transfer format of the request. For more
information, refer to ODVA website.

Inhibit Time (ms) In multiples of 2 ms (2 ms by
default)

Minimum period time between 2 data
exchanges.
Accessible if Trigger Type is Change of state.
Inhibit Time maximum value is RPI and is
limited to 254 ms.

Parameter Values Description

(1) The Class ID, Instance ID, and Attribute ID can be found in the device documentation. Refer to How To
Find Assembly Information (see page 158).
EIO0000001909 03/2018 157

http://www.odva.org/Home/ODVATECHNOLOGIES/EtherNetIP/EtherNetIPLibrary.aspx
http://www.odva.org/Home/ODVATECHNOLOGIES/EtherNetIP/EtherNetIPLibrary.aspx

Communication Modules
How to Find Assembly Information
Assembly information is provided in the device documentation. It is usually part of the description
of assembly objects.
To configure an assembly, identify the following items of information:
1. Class ID

The "Assembly object" Class ID is contained in the device documentation and is normally equal
to 04h.

2. Instance ID
Select the assembly instance, depending on the application and on the type of device. The
selection of the assembly instance will induce a dedicated state machine in the device:
 Configuration assembly: Supported by few devices; verify in the device documentation which

assembly instance is supported.
 Consuming assembly: sometimes referred to as “device output” in the device documentation

(from the device point of view).
 Producing assembly: sometimes referred to as “device input“ in the device documentation

(from the device point of view).
3. Attribute ID

Search for the attribute to read. This corresponds to the data buffer exchanged during the
connection.
The attribute property must have write access for the producing assembly and read access for
the consuming assembly.
The attribute ID is the same for the two assemblies. Its value is contained in the device
documentation and is normally equal to 03h. It matches an attribute whose access is Get/Set.
The name is often "data", and the type of data “Array of byte”.
158 EIO0000001909 03/2018

Communication Modules
Device Replacement with User Parameters

Overview
You can configure User Parameters that are sent to the device to facilitate device replacement just
before the scanner connection is started after:
 Application download
 Reset warm/cold start
 Manual start of a connection
Some EtherNet/IP devices have predefined User Parameters.
The User Parameters tab allows you to add and manage other parameters.
For maintenance details, refer to Apply the Correct Device Configuration.

User Parameters
In the Devices tree, double-click an EtherNet/IP device and select the User Parameters tab:

Column Description
Line Line number.

Indicates the order of the parameters loaded to the device.
Name Name of the parameter.
Class Class ID(1) of the class corresponding to the object.
Instance Instance ID(1) of the instance corresponding to the object.
Attribute Attribute ID(1) of the attribute corresponding to the object.
Value Value of the parameter.

Double-click the value to modify it. If applicable, a list opens containing possible
values.

(1) The Class ID, Instance ID, and Attribute ID can be found in the device documentation. Refer to How To
Find User Parameter Information (see page 162).
EIO0000001909 03/2018 159

Communication Modules
Bitlength Number of bits of the parameter.
Automatically changed depending of the parameter datatype selected.

Abort if error If selected, when an error is detected, the transmission of the parameters is aborted.
Jump to line if error If selected, when an error is detected, the program resumes with the line specified in

the Next line column. A block can thus be skipped during the initialization, or a return
can be defined.

NOTE: A return can lead to an endless loop if it is never possible to write a certain
parameter.

Next line Double-click to enter the line to jump to (if Jump to line if error is selected).
Comment Double-click to enter a comment.

Icons Description
Move up Move up the selected parameter in the parameters list.
Move down Move down the selected parameter in the parameters list.
New Creates a new parameter.
Delete Delete the selected parameter.
Edit Edit the selected parameter.

Column Description

(1) The Class ID, Instance ID, and Attribute ID can be found in the device documentation. Refer to How To
Find User Parameter Information (see page 162).
160 EIO0000001909 03/2018

Communication Modules
Creating or Configuring User Parameters
Click New, or select a parameter and click Edit:

Fields Description
Name Name of the parameter.
Class Class ID(1) of the class corresponding to the type of object.
Instance Instance ID(1) of the instance corresponding to an implementation of a class.
Attribute Attribute ID(1) of the attribute corresponding to a characteristic of an instance.
Datatype List containing the possible data type.
Bitlength Number of bits of the parameter.

Automatically changed depending on the selected Datatype.
Value Value of the parameter.
(1) The Class ID, Instance ID, and Attribute ID can be found in the device documentation. Refer to How To
Find User Parameter Information (see page 162).
EIO0000001909 03/2018 161

Communication Modules
How To Find User Parameter Information
Configurable user parameter information is provided in the device documentation. It is usually part
of the description of application objects, explicit messaging, or objects belonging to EtherNet/IP
category 3.
User parameter write access is usually specified for the class and/or instance to which the user
parameter belongs. The write operation is typically performed using a service called
Set_Attribute_Single or Write one attribute. Alternatively, a service identifier 0x10
(hexadecimal) or 16 (decimal) may be supported.
A user parameter always has the following numeric properties:
 Class, or Class ID, usually expressed as an hexadecimal value
 Instance, or Instance ID, usually expressed as an hexadecimal value
 Attribute, or Attribute ID, usually expressed as an hexadecimal value
A user parameter may also have an identifier, expressed in the form of a decimal triplet (xx/yy/zz)
or hexadecimal triplet (16#xx/yy/zz)
162 EIO0000001909 03/2018

Communication Modules
EtherNet/IP I/O Mapping

Overview
Once the data exchanges are configured, you can map variables to be used by the application.

Configure an EtherNet/IP Target Device I/O Mapping
To configure an EtherNet/IP target device I/O mapping, proceed as follows:

Step Action
1 In the Devices tree, double-click an EtherNet/IP target device.

Result: Its configuration window is displayed.
2 Select the EtherNet/IP I/O Mapping tab.
EIO0000001909 03/2018 163

Communication Modules
3 Double-click in a cell of the Variable column to open a text field.
Enter the name of a variable or click the browse button [...] and chose a variable with the Input
Assistant.

4 IEC Objects. This part of the tab lists IEC objects of the target device that can be accessed by
the application (for example, in order to restart a bus or to poll information).

5 The Bus cycle task parameter defines the task responsible for refreshing the I/O images (%IB
and %QB). These I/O images correspond to the EtherNet/IP request sent to the EtherNet/IP
target device and the health bits.
Select the Bus cycle task in the list:
 Use parent bus cycle setting (by default). Use the task specified in the PLC Settings

(see page 88) tab of the controller.
 MAST. Use the MAST task (see page 49).
 Motion. Use the Motion task (see page 42).

Step Action
164 EIO0000001909 03/2018

Modicon LMC078
Ethernet Configuration
EIO0000001909 03/2018
Ethernet Configuration

Chapter 11
Ethernet Configuration

Introduction
This chapter describes how to configure the Ethernet network interface of the Modicon LMC078
Motion Controller.

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
11.1 Ethernet Services 166
11.2 Firewall Configuration 184
EIO0000001909 03/2018 165

Ethernet Configuration
Ethernet Services

Section 11.1
Ethernet Services

What Is in This Section?
This section contains the following topics:

Topic Page
Presentation 167
IP Address Configuration 169
Modbus TCP Client/Server 174
FTP Server 176
FTP Client 178
LMC078 Motion Controller as an IOScanner Slave Device on Modbus TCP 179
166 EIO0000001909 03/2018

Ethernet Configuration
Presentation

Ethernet Services
The controller supports the following services:
 Modbus TCP Server (see page 174)
 Modbus TCP Client (see page 174)
 Web visualization (see page 168)
 FTP Server (see page 176)
 FTP Client (see page 178)
 Controller as an IOScanner Slave Device on Modbus TCP (see page 179)
 IEC VAR ACCESS (see page 168)

Ethernet Protocol
The controller supports the following protocols:
 SoMachine protocol
 IP (Internet Protocol)
 UDP (User Datagram Protocol)
 TCP (Transmission Control Protocol)
 ARP (Address Resolution Protocol)
 ICMP (Internet Control Messaging Protocol)
 IGMP (Internet Group Management Protocol)

Connections
This table presents the maximum number of connections:

Each server based on TCP manages its own set of connections.
When a client tries to open a connection that exceeds the poll size, the controller closes the oldest
connection.
If all connections are busy (exchange in progress) when a client tries to open a new one, the new
connection is denied.
All server connections stay open as long as the controller stays in operational states (RUN, STOP,
HALT).

Connection Type Maximum Number of Connections
Modbus Server 8
Modbus Client 2
Ethernet/IP Target 64
FTP Server 4
Web visualization 10
EIO0000001909 03/2018 167

Ethernet Configuration
All server connections are closed when leaving or entering operational states (RUN, STOP, HALT),
except in case of power outage (because the controller does not have time to close the
connections).

Services Available
With an Ethernet communication, the IEC VAR ACCESS service is supported by the controller.
With the IEC VAR ACCESS service, data can be exchanged between the controller and an HMI.
The NetWork variables service is also supported by the controller. With the NetWork variables
service, data can be exchanged between controllers.
NOTE: For more information, refer to SoMachine Programming Guide.

Web Visualization
The Web visualization function is described in the SoMachine online help, chapter Programming
with SoMachine / Visualization.
168 EIO0000001909 03/2018

Ethernet Configuration
IP Address Configuration

Introduction
There are different ways to assign the IP address of the controller:
 address assignment by DHCP server
 address assignment by BOOTP server
 fixed IP address
The IP address can be changed dynamically:
 via the Controller Selection (see SoMachine, Programming Guide) tab in SoMachine.
 via the changeIPAddress function block (see page 251).
NOTE: If the attempted addressing method is unsuccessful, the controller will start using a default
IP address (see page 172).
Carefully manage the IP addresses because each device on the network requires a unique
address. Having multiple devices with the same IP address can cause unintended operation of
your network and associated equipment.

NOTE: Verify that your system administrator maintains a record of all assigned IP addresses on
the network and subnetwork, and inform the system administrator of all configuration changes
performed.

WARNING
UNINTENDED EQUIPMENT OPERATION
 Verify that there is only one master controller configured on the network or remote link.
 Verify that all devices have unique addresses.
 Obtain your IP address from your system administrator.
 Confirm that the IP address of the device is unique before placing the system into service.
 Do not assign the same IP address to any other equipment on the network.
 Update the IP address after cloning any application that includes Ethernet communications to

a unique address.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
EIO0000001909 03/2018 169

Ethernet Configuration
Address Management
The different types of address systems for the controller are shown in this diagram:

NOTE: If a device programmed to use the DHCP or BOOTP addressing methods is unable to
contact its respective server, the controller uses the default IP address. It will, however, constantly
repeat its request.
The IP process restarts in the following cases:
 Controller reboot
 Ethernet cable reconnection
 Application download (if IP parameters change)
 DHCP or BOOTP server detected after a prior addressing attempt was unsuccessful.
170 EIO0000001909 03/2018

Ethernet Configuration
Ethernet Configuration
In the Devices tree, double-click Ethernet:

The configured parameters are explained as below:

Configured Parameters Description
Interface Name Name of the network link.
Network Name Used as device name to retrieve IP address through

DHCP, maximum 16 characters.
IP Address by DHCP IP address is obtained via DHCP.
IP Address by BOOTP IP address is obtained via BOOTP.
EIO0000001909 03/2018 171

Ethernet Configuration
Default IP Address
The IP address by default is 190.201.100.100.
The default subnet mask is 255.255.255.0.

Address Classes
The IP address is linked:
 to a device (the host)
 to the network to which the device is connected
An IP address is always coded using 4 bytes.
The distribution of these bytes between the network address and the device address may vary.This
distribution is defined by the address classes.
The different IP address classes are defined in this table:

Subnet Mask
The subnet mask is used to address several physical networks with a single network address. The
mask is used to separate the subnetwork and the device address in the host ID.
The subnet address is obtained by retaining the bits of the IP address that correspond to the
positions of the mask containing 1, and replacing the others with 0.
Conversely, the subnet address of the host device is obtained by retaining the bits of the IP
address that correspond to the positions of the mask containing 0, and replacing the others with 1.

Fixed IP Address To configure a fixed IP address, use the Controller
Selection (see page 87) tab of the Controller Device Editor.

Ethernet Protocol Protocol type used: Ethernet2
Transfer Rate Transfer rate and direction on the bus are automatically

configured.

Configured Parameters Description

Address Class Byte1 Byte 2 Byte 3 Byte 4
Class A 0 Network ID Host ID
Class B 1 0 Network ID Host ID
Class C 1 1 0 Network ID Host ID
Class D 1 1 1 0 Multicast Address
Class E 1 1 1 1 0 Address reserved for subsequent use
172 EIO0000001909 03/2018

Ethernet Configuration
Example of a subnet address:

NOTE: The device does not communicate on its subnetwork when there is no gateway.

Gateway Address
The gateway allows a message to be routed to a device that is not on the current network.
If there is no gateway, the gateway address is 0.0.0.0.

Security Parameters

Nodename
The Nodename is used to identify a device during a network scan. Each device in your network
must have a unique Nodename.
The Nodename of an LMC078 motion controller is the controller name as it appears in the Devices
tree.

IP address 192 (11000000) 1 (00000001) 17 (00010001) 11 (00001011)
Subnet mask 255 (11111111) 255 (11111111) 240 (11110000) 0 (00000000)
Subnet address 192 (11000000) 1 (00000001) 16 (00010000) 0 (00000000)

Security Parameters Description
SoMachine protocol
active

This parameter allows you to deactivate the SoMachine protocol on Ethernet
interfaces. When deactivated, every SoMachine request from every device is
rejected, including those from the UDP or TCP connection. Therefore, no
connection is possible on Ethernet from a PC with SoMachine, from an HMI target
that wants to exchange variables with this controller, from an OPC server, or from
Controller Assistant.

Modbus Server active This parameter allows you to deactivate the Modbus Server of the Logic Controller.
When deactivated, every Modbus request to the Logic Controller is ignored.

FTP Server active This parameter allows you to deactivate the FTP Server of the Logic Controller.
When deactivated, FTP requests are ignored.

Discovery protocol
active

This parameter allows you to deactivate Discovery protocol. When deactivated,
Discovery requests are ignored.

WebVisualisation
protocol active

This parameter allows you to deactivate the Web visualization pages of the
controller. When deactivated, the HTTP requests to the logic controller
WebVisualisation protocol are ignored.
EIO0000001909 03/2018 173

Ethernet Configuration
Modbus TCP Client/Server

Introduction
Unlike Modbus serial link, Modbus TCP is not based on a hierarchical structure, but on a
client/server model.
The Modicon LMC078 Motion Controller implements both client and server services so that it can
initiate communications to other controllers and I/O devices, and to respond to requests from other
controllers, SCADA, HMIs, and other devices.
Without any configuration, the embedded Ethernet port of the controller supports Modbus server.
The Modbus client/server is included in the firmware and does not require any programming action
from the user. Due to this feature, it is accessible in RUNNING, STOPPED and EMPTY states.

Modbus TCP Client
The Modbus TCP client supports the following function blocks from the PLCCommunication library
without any configuration:
 ADDM
 READ_VAR
 SEND_RECV_MSG
 SINGLE_WRITE
 WRITE_READ_VAR
 WRITE_VAR
For further information, refer to the Function Block Descriptions (see SoMachine, Modbus and
ASCII Read/Write Functions, PLCCommunication Library Guide).

Modbus TCP Server
The Modbus server supports the Modbus requests:

Function Code
Dec (Hex)

Subfunction
Dec (Hex)

Function

1 (1) – Read digital outputs (%Q)
2 (2) – Read digital inputs (%I)
3 (3) – Read holding register (%MW)
6 (6) – Write single register (%MW)
8 (8) – Diagnostic
15 (F) – Write multiple digital outputs (%Q)
16 (10) – Write multiple registers (%MW)
174 EIO0000001909 03/2018

Ethernet Configuration
NOTE: The embedded Modbus server only ensures time-consistency for a single word (2 bytes).
If your application requires time-consistency for more than 1 word, add and configure
(see page 179) a Modbus TCP Slave Device so that the contents of the %IW and %QW buffers are
time-consistent in the associated IEC task (MAST by default).

Diagnostic Request
This table contains the data selection code list:

23 (17) – Read/write multiple registers (%MW)
43 (2B) 14 (E) Read device identification

Function Code
Dec (Hex)

Subfunction
Dec (Hex)

Function

Data Selection Code (hex) Description
00 Reserved
01 Basic Network Diagnostics
02 Ethernet Port Diagnostic
03 Modbus TCP/Port 502 Diagnostics
04 Modbus TCP/Port 502 Connection Table
05 - 7E Reserved for other public codes
7F Data Structure Offsets
EIO0000001909 03/2018 175

Ethernet Configuration
FTP Server

Introduction
Any FTP client installed on a computer that is connected to the controller (Ethernet port), without
SoMachine installed, can be used to transfer files to and from the data storage area of the
controller.
NOTE: Schneider Electric adheres to industry best practices in the development and implemen-
tation of control systems. This includes a "Defense-in-Depth" approach to secure an Industrial
Control System. This approach places the controllers behind one or more firewalls to restrict
access to authorized personnel and protocols only.

NOTE: Make use of the security-related commands (see SoMachine, Menu Commands, Online
Help) which provide a way to add, edit, and remove a user in the online user management of the
target device where you are currently logged in.
The FTP server is available even if the controller is empty (no user application and no User Rights
are enabled).

WARNING
UNAUTHENTICATED ACCESS AND SUBSEQUENT UNAUTHORIZED MACHINE
OPERATION
 Evaluate whether your environment or your machines are connected to your critical

infrastructure and, if so, take appropriate steps in terms of prevention, based on Defense-in-
Depth, before connecting the automation system to any network.

 Limit the number of devices connected to a network to the minimum necessary.
 Isolate your industrial network from other networks inside your company.
 Protect any network against unintended access by using firewalls, VPN, or other, proven

security measures.
 Monitor activities within your systems.
 Prevent subject devices from direct access or direct link by unauthorized parties or unauthen-

ticated actions.
 Prepare a recovery plan including backup of your system and process information.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
176 EIO0000001909 03/2018

Ethernet Configuration
FTP Access
Access to the FTP server is controlled by User Rights when they are enabled in the controller. For
more information, refer to Users and Groups Tab Description (see page 74).
If User Rights are not activated in the controller, you are prompted for a user name and password.
The default user name is USER and the default password is also USER.
NOTE: It is preferable to use the User Rights to help protect your controller as a whole.
For reasons of security for your installation, you must immediately change the default password
upon first login if User Rights are not enabled in the controller. The password can be changed with
the function FC_UserChangePassword (see Modicon LMC078 Motion Controller, System
Functions and Variables, PLCSystem Library Guide).

NOTE: A secure password is one that has not been shared or distributed to any unauthorized
personnel and does not contain any personal or otherwise obvious information. Further, a mix of
upper and lower case letters and numbers offer greater security. You should choose a password
length of at least 7 characters.
NOTE: The only way to gain access to a controller that has user access-rights enabled and for
which you do not have the password(s) is by performing an Update Firmware operation. In
addition, you may clear the User Rights in the controller by running a script (for more information,
refer to SoMachine Programming Guide). This effectively removes the existing application from the
controller memory, but restores the ability to access the controller.
If you have not enabled User Rights and if you have lost or forgotten the password, you will need
to connect directly to the controller with SoMachine and perform a reset origin to reestablish the
default password. After doing so, set up a new, secure password.

Files Access
See File Organization (see page 33).

WARNING
UNAUTHORIZED DATA ACCESS
 Immediately change the default password to a new, secure password.
 Do not distribute the password to unauthorized or otherwise unqualified personnel.
 Disable the FTP to prevent any unwanted or unauthorized access to data in your application.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
EIO0000001909 03/2018 177

Ethernet Configuration
FTP Client

Introduction
The FtpRemoteFileHandling library provides the following FTP client functionalities for remote file
handling:
 Reading files
 Writing files
 Deleting files
 Listing content of remote directories
 Adding directories
 Removing directories
NOTE: Schneider Electric adheres to industry best practices in the development and implemen-
tation of control systems. This includes a "Defense-in-Depth" approach to secure an Industrial
Control System. This approach places the controllers behind one or more firewalls to restrict
access to authorized personnel and protocols only.

For further information, refer to FtpRemoteFileHandling Library Guide.

WARNING
UNAUTHENTICATED ACCESS AND SUBSEQUENT UNAUTHORIZED MACHINE
OPERATION
 Evaluate whether your environment or your machines are connected to your critical

infrastructure and, if so, take appropriate steps in terms of prevention, based on Defense-in-
Depth, before connecting the automation system to any network.

 Limit the number of devices connected to a network to the minimum necessary.
 Isolate your industrial network from other networks inside your company.
 Protect any network against unintended access by using firewalls, VPN, or other, proven

security measures.
 Monitor activities within your systems.
 Prevent subject devices from direct access or direct link by unauthorized parties or unauthen-

ticated actions.
 Prepare a recovery plan including backup of your system and process information.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
178 EIO0000001909 03/2018

Ethernet Configuration
LMC078 Motion Controller as an IOScanner Slave Device on Modbus TCP

Overview
This section describes the configuration of the LMC078 Motion Controller as a Modbus TCP Slave
Device.
The Modbus TCP Slave Device creates a specific I/O area in the controller, accessible through the
Modbus TCP protocol. It is used when an external I/O scanner (master) needs to access the %IW
and %QW objects of the controller. The main advantage of using a Modbus TCP Slave Device is that
the controller objects are gathered, and can be accessed through a single Modbus request.
The Modbus slave device adds another Modbus server function to the controller. This server is
accessible by the Modbus client application by using the configured Unit ID (not 255). The
embedded Modbus server of the slave controller needs no configuration, and is addressed through
the Unit ID = 255.
Inputs/outputs are seen from the slave controller: inputs are written by the master, and outputs are
read by the master.
The TCP slave device can define a privileged Modbus client application, whose connection is not
forcefully closed (embedded Modbus connections may be closed when more than 8 connections
are needed).
For further information about Modbus TCP, refer to the www.odva.org website.

Adding a Modbus TCP Slave Device
To configure your LMC078 Motion Controller as a Modbus TCP slave device:

Step Action
1 Select the Ethernet Network node and click the Plus button.

Result: The Add Device dialog window is displayed.
2 Choose ModbusTCP Slave Device.
3 Click Add Device
4 Click Close.
EIO0000001909 03/2018 179

Ethernet Configuration
Modbus TCP Configuration
To configure the Modbus TCP Slave Device, double-click Ethernet Network → ModbusTCP Slave
Device in the Devices tree.
This dialog box appears:

Element Description
IP Master Address IP address of the Modbus master

The connections are not closed on this address.
TimeOut Timeout in 500 ms increments

NOTE: The timeout applies to the IP master Address unless the address is
0.0.0.0.

Slave Port Modbus communication port (502)
Unit ID Sends the requests to the Modbus TCP slave device (1...247), instead of to the

embedded Modbus server (255).
Holding Registers (%IW) Number of %IW registers to be used in the exchange (2...40) (each register is

2 bytes)
Input Registers (%QW) Number of %QW registers to be used in the exchange (2...40) (each register is

2 bytes)
180 EIO0000001909 03/2018

Ethernet Configuration
Modbus TCP Slave Device I/O Mapping Tab
The I/Os are mapped to Modbus registers from the master perspective as follows:
 %IWs are mapped from register 0 to n-1 and are R/W (n = Holding register quantity, each %IW

register is 2 bytes).
 %QWs are mapped from register n to n+m -1 and are read only (m = Input registers quantity,

each %QW register is 2 bytes).
Once a Modbus TCP Slave Device has been configured, Modbus commands sent to its Unit ID
(Modbus address) access the %IW and %QW objects of the controller instead of the regular Modbus
words (accessed when the Unit ID is 255). This facilitates read/write operations by a Modbus TCP
IOScanner application.
The Modbus TCP Slave Device responds to a subset of the Modbus commands with the purpose
of exchanging data with the external I/O scanner. The following Modbus commands are supported
by the Modbus TCP slave device:

NOTE: Modbus requests that attempt to access registers above n+m-1 are answered by the 02 -
ILLEGAL DATA ADDRESS exception code.

Function Code
Dec (Hex)

Function Comment

3 (3) Read holding register Allows the master to read %IW and %QW objects of the device
6 (6) Write single register Allows the master to write %IW objects of the device
16 (10) Write multiple registers Allows the master to write %IW objects of the device
23 (17) Read/write multiple

registers
Allows the master to read %IW and %QW objects of the device
and write %IW objects of the device

Other Not supported –
EIO0000001909 03/2018 181

Ethernet Configuration
To link I/O objects to variables, select the Modbus TCP Slave Device I/O Mapping tab:

Channel Type Description
Input IW0 WORD Holding register 0

...
IWx WORD Holding register x

Output QW0 WORD Input register 0
...
QWy WORD Input register y
182 EIO0000001909 03/2018

Ethernet Configuration
The number of words depends on the Holding Registers (%IW) and Input Registers (%QW)
parameters of the Modbus TCP tab.
NOTE: Output means OUTPUT from Originator controller (= %IW for the controller). Input means
INPUT from Originator controller (= %QW for the controller).
NOTE: The Modbus TCP Slave Device refreshes the %IW and %QW registers as a single time-
consistent unit, synchronized with the IEC tasks (MAST task by default). By contrast, the
embedded Modbus TCP server only ensures time-consistency for 1 word (2 bytes). If your
application requires time-consistency for more than 1 word (2 bytes), use the Modbus TCP Slave
Device.

Bus Cycle Options
Select the Bus cycle task to use:
 Use parent bus cycle setting (the default),
 MAST
 An existing task of the project
NOTE: There is a corresponding Bus cycle task parameter in the I/O mapping editor of the device
that contains the Modbus TCP Slave Device. This parameter defines the task responsible for
refreshing the %IW and %QW registers.
EIO0000001909 03/2018 183

Ethernet Configuration
Firewall Configuration

Section 11.2
Firewall Configuration

Introduction
This section describes how to configure the firewall of the Modicon LMC078 Motion Controller.

What Is in This Section?
This section contains the following topics:

Topic Page
Introduction 185
Firewall Behavior 187
Firewall Script Commands 188
Script Files 192
184 EIO0000001909 03/2018

Ethernet Configuration
Introduction

Firewall Presentation
In general, firewalls help protect network security zone perimeters by blocking unauthorized
access and permitting authorized access. A firewall is a device or set of devices configured to
permit, deny, encrypt, decrypt, or proxy traffic between different security zones based upon a set
of rules and other criteria.
Process control devices and high-speed manufacturing machines require fast data throughput and
often cannot tolerate the latency introduced by an aggressive security strategy inside the control
network. Firewalls, therefore, play a significant role in a security strategy by providing levels of
protection at the perimeters of the network. Firewalls are important part of an overall, system level
strategy.
NOTE: Schneider Electric adheres to industry best practices in the development and implemen-
tation of control systems. This includes a "Defense-in-Depth" approach to secure an Industrial
Control System. This approach places the controllers behind one or more firewalls to restrict
access to authorized personnel and protocols only.

Firewall Configuration
There are two ways to manage the controller firewall configuration:
 Static configuration,
 Application settings.
Script file is used in the static configuration.

WARNING
UNAUTHENTICATED ACCESS AND SUBSEQUENT UNAUTHORIZED MACHINE
OPERATION
 Evaluate whether your environment or your machines are connected to your critical

infrastructure and, if so, take appropriate steps in terms of prevention, based on Defense-in-
Depth, before connecting the automation system to any network.

 Limit the number of devices connected to a network to the minimum necessary.
 Isolate your industrial network from other networks inside your company.
 Protect any network against unintended access by using firewalls, VPN, or other, proven

security measures.
 Monitor activities within your systems.
 Prevent subject devices from direct access or direct link by unauthorized parties or unauthen-

ticated actions.
 Prepare a recovery plan including backup of your system and process information.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
EIO0000001909 03/2018 185

Ethernet Configuration
Static Configuration
The static configuration is loaded at the controller boot.
The controller firewall can be statically configured by managing a default script file located in the
controller. The path to this file is /Usr/Cfg/FirewallDefault.cmd.

Application Settings
Refer to Ethernet Configuration (see page 171).
186 EIO0000001909 03/2018

Ethernet Configuration
Firewall Behavior

Introduction
The firewall configuration depends on the action done on the controller and the initial configuration
state. There are 4 possible initial states:
 There is no default script file in the controller.
 A correct script file is present.
 An incorrect script file is present.
 There is no default script file and the application has configured the firewall.

No Default Script File

Default Script File Present

Incorrect Default Script File Present

Application Settings with No Default Script File

If... Then ...
Boot of the controller Firewall is not configured. No protection is activated.
Download application Firewall is configured according to the application settings.

If... Then ...
Boot of the controller Firewall is configured according to the default script file.
Download application The whole configuration of the application is ignored.

Firewall is configured according to the default script file.

If... Then ...
Boot of the controller Firewall is not configured. No protection is activated
Download application Firewall is configured according to the application settings.

If... Then ...
Boot of the controller Firewall is configured according to the application settings.
Download application The whole configuration of the previous application is deleted.

Firewall is configured according to the new application settings.
EIO0000001909 03/2018 187

Ethernet Configuration
Firewall Script Commands

Overview
This section describes how script files (default script file or dynamic script file) are written so that
they can be executed during the booting of the controller or during a specific command triggered.

Script File Syntax
The syntax of script files is described in Script Syntax Guidelines (see page 192).

General Firewall Commands
The following commands are available to manage the Ethernet firewall of the LMC078 Motion
Controller:

Specific Firewall Commands
The following commands are available to configure firewall rules for specific ports and addresses:

Command Description
FireWall Enable Blocks the frames from the Ethernet interfaces. If no specific

IP address is authorized, it is not possible to communicate on
the Ethernet interfaces.

NOTE: By default, when the firewall is enabled, the frames
are rejected.

FireWall Disable IP addresses are allowed access to the controller on the
Ethernet interfaces.

FireWall Eth1 Default Allow Frames are accepted by the controller.
FireWall Eth1 Default Reject Frames are rejected by the controller.

NOTE: By default, if this line is not present, it corresponds
to the command FireWall Eth1 Default Reject.

Command Range Description
Firewall Eth1
Allow IP •.•.•.•

• = 0...255 Frames from the specified IP address are allowed on all port
numbers and port types.

Firewall Eth1
Reject IP •.•.•.•

• = 0...255 Frames from the specified IP address are rejected on all port
numbers and port types.

Firewall Eth1
Allow IPs •.•.•.•
to •.•.•.•

• = 0...255 Frames from the IP addresses in the specified range are
allowed for all port numbers and port types.

Firewall Eth1
Reject IPs •.•.•.•
to •.•.•.•

• = 0...255 Frames from the IP addresses in the specified range are
rejected for all port numbers and port types.
188 EIO0000001909 03/2018

Ethernet Configuration
Firewall Eth1
Allow port_type
port Y

Y = (destination port
numbers (see page 191))

Frames with the specified destination port number are
allowed.

Firewall Eth1
Reject port_type
port Y

Y = (destination port
numbers (see page 191))

Frames with the specified destination port number are
allowed.

Firewall Eth1
Allow port_type
ports Y1 to Y2

Y = (destination port
numbers (see page 191))

Frames with a destination port number in the specified range
are allowed.

Firewall Eth1
Reject port_type
ports Y1 to Y2

Y = (destination port
numbers (see page 191))

Frames with a destination port number in the specified range
are rejected.

Firewall Eth1
Allow IP •.•.•.• on
port_type port Y

• = 0...255
Y = (destination port
numbers (see page 191))

Frames from the specified IP address and with the specified
destination port number are allowed.

Firewall Eth1
Reject IP •.•.•.•
on port_type port Y

• = 0...255
Y = (destination port
numbers (see page 191))

Frames from the specified IP address and with the specified
destination port number are rejected.

Firewall Eth1
Allow IP •.•.•.• on
port_type ports Y1
to Y2

• = 0...255
Y = (destination port
numbers (see page 191))

Frames from the specified IP address and with a destination
port number in the specified range are allowed.

Firewall Eth1
Reject IP •.•.•.•
on port_type ports
Y1 to Y2

• = 0...255
Y = (destination port
numbers (see page 191))

Frames from the specified IP address and with a destination
port number in the specified range are rejected.

Firewall Eth1
Allow IPs
•1.•1.•1.•1 to
•2.•2.•2.•2 on
port_type port Y

• = 0...255
Y = (destination port
numbers (see page 191))

Frames from an IP address in the specified range and with
the specified destination port number are rejected.

Firewall Eth1
Reject IPs
•1.•1.•1.•1 to
•2.•2.•2.•2 on
port_type port Y

• = 0...255
Y = (destination port
numbers (see page 191))

Frames from an IP address in the specified range and with
the specified destination port number are rejected.

Firewall Eth1
Allow IPs
•1.•1.•1.•1 to
•2.•2.•2.•2 on
port_type ports Y1
to Y2

• = 0...255
Y = (destination port
numbers (see page 191))

Frames from an IP address in the specified range and with a
destination port number in the specified range are allowed.

Command Range Description
EIO0000001909 03/2018 189

Ethernet Configuration
Script Example
; Enable firewall on Ethernet 1. All frames are rejected;

FireWall Enable;

; Block all Modbus Requests on all IP address

Firewall Eth1 Reject tcp port 502;

; Allow FTP active connection for IP address 85.16.0.17

Firewall Eth1 Allow IP 85.16.0.17 on tcp port 20 to 21;

Firewall Eth1
Reject IPs
•1.•1.•1.•1 to
•2.•2.•2.•2 on
port_type ports Y1
to Y2

• = 0...255
Y = (destination port
numbers (see page 191))

Frames from an IP address in the specified range and with a
destination port number in the specified range are rejected.

Firewall Eth1
Allow MAC
••:••:••:••:••:••

 • = 0...F Frames from the specified MAC address ••:••:••:••:•• are
allowed.

Firewall Eth1
Reject MAC
••:••:••:••:••:••

 • = 0...F Frames with the specified MAC address ••:••:••:••:•• are
rejected.

Command Range Description
190 EIO0000001909 03/2018

Ethernet Configuration
Used Ports

Protocol Destination Port Numbers
SoMachine UDP 1740, 1741, 1742, 1743

TCP 1105
FTP TCP 21, 20
HTTP TCP 80
Modbus TCP 502
Discovery UDP 27126, 27127
NVL UDP Default value: 1202
EtherNet/IP UDP 2222

TCP 44818
EIO0000001909 03/2018 191

Ethernet Configuration
Script Files

Overview
The following describes how to write script files to configure the Ethernet firewall (see page 188).

Script Syntax Guidelines
End every line of a command in the script with a ";".

If the line begins with a ";", the line is a comment.

The maximum number of lines in a script file is 50.
The syntax is not case-sensitive.
If the syntax is not respected in the script file, the script file is not executed. This means, for
example, that the firewall configuration remains in the previous state.
NOTE: If the script file is not executed, a log file is generated. The log file location in the controller
is /usr/Syslog/FWLog.txt.
192 EIO0000001909 03/2018

Modicon LMC078
CANopen Configuration
EIO0000001909 03/2018
CANopen Configuration

Chapter 12
CANopen Configuration

Introduction
This chapter describes how to configure the CAN interface offered within the Controller.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
CANopen Interface Configuration 194
CANopen Master Configuration 195
CANopen Slave Configuration 197
EIO0000001909 03/2018 193

CANopen Configuration
CANopen Interface Configuration

Adding the CAN Bus Node
To add the CAN_Layer node to your controller, select CANbus in the Hardware Catalog, drag it to
the Devices tree and drop it on your controller node.
For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)

CAN Bus Configuration
To configure the CAN bus of your controller, proceed as follows:

Adding a CANopen Manager
The controller supports the following CANopen managers:
 CANopen_Manager for the CAN port configured as CANopen master
 CAN_Local_Device for the CAN port configured as CANopen slave
To add a CANopen manager to your controller, select in the Hardware Catalog:
 For a CANopen master: CANopen_Manager
 For a CANopen slave: CAN_Local_Device
Drag it to the Devices tree and drop it on one of the highlighted nodes.
For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)

Step Action
1 In the Devices tree, double-click CAN_Layer.
2 Configure the baud rate (by default: 250000 bits/s).
194 EIO0000001909 03/2018

CANopen Configuration
CANopen Master Configuration

CANopen Manager Configuration
To configure the CANopen_Manager, proceed as follows:

Adding a CANopen Device
Refer to the SoMachine Programming Guide for more information on Adding Communication
Managers and Adding Slave Devices to a Communication Manager.

Step Action
1 Double-click CANopen_Manager in the Devices tree.

Result: The CANopen Manager configuration window appears:

2 For more information about CANopen manager configuration, refer to the SoMachine online help,
chapter Programming with SoMachine / Device Editors / CANopen Manager.
EIO0000001909 03/2018 195

CANopen Configuration
CANopen Operating Limits
The Modicon LMC078 Motion Controller CANopen master has the following operating limits:

Maximum number of slave devices 63
Maximum number of Received PDO (RPDO) 252
Maximum number of Transmitted PDO (TPDO) 252

WARNING
UNINTENDED EQUIPMENT OPERATION
 Do not connect more than 63 CANopen slave devices to the controller.
 Program your application to use 252 or fewer Transmit PDO (TPDO).
 Program your application to use 252 or fewer Receive PDO (RPDO).
Failure to follow these instructions can result in death, serious injury, or equipment damage.
196 EIO0000001909 03/2018

CANopen Configuration
CANopen Slave Configuration

CANopen Slave Configuration
To configure the controller as a CANopen slave, proceed as follows:

Step Action
1 Select the controller node in the Devices tree, and either click the green plus button of the node, or

right-click the node and select Add Device from the context menu.
Result: The Add Device dialog box opens.

2 In the Add Device dialog box, select CANbus and click the Add Device button.
Result: The device is added to the controller.

3 Click the Close button in the Add Device dialog box.
4 Select the CAN_Layer node in the Devices tree, and either click the green plus button of the node,

or right-click the node and select Add Device from the context menu.
5 In the Add Device dialog box, select CAN Local_Device and click the Add Device button.

Result: The device is added to the CAN_Layer node.
6 Click the Close button in the Add Device dialog box.
7 Double-click CAND_Device in the Devices tree.

Result: The CAND_Device configuration window appears:

8 The configuration of the CANopen manager is described in the SoMachine online help, chapter
Programming with SoMachine / Device Editors / CANbus Slave Device.
EIO0000001909 03/2018 197

CANopen Configuration
198 EIO0000001909 03/2018

Modicon LMC078
Sercos Configuration
EIO0000001909 03/2018
Sercos Configuration

Chapter 13
Sercos Configuration

Introduction
This chapter describes how to configure the Sercos interface of the Modicon LMC078 Motion
Controller.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Overview of the Sercos Standard 200
Sercos Interface Configuration 203
Sercos Devices 208
Device Addressing Editor 209
Lexium LXM32S Drive Configuration 213
TM5NS31 Sercos Interface Module 216
Sercos Error Codes 217
EIO0000001909 03/2018 199

Sercos Configuration
Overview of the Sercos Standard

Introduction
The Sercos interface is a standardized interface (IEC 6149) for real-time communication between
controllers, drives, and I/O devices.
It describes the internationally standardized digital interface for communication between a control
unit and associated servo drives networked together to form a motion control system. It defines
standardization of operating data, parameters, and scaling for machines with multiple drives that
can be operated in torque, velocity, or position interface operation modes.
The main features of the Sercos interface are:
 Ring topology (redundancy)
 Master / slave system
 Baud rate 100 MBaud
 Minimum synchronization time of 1 ms (8 axes), 2 ms (16 axes), or 4 ms (24 axes)
 Synchronization (jitter < 1 µs)

Data Exchange
Communication with Sercos interface is divided into two types:
 Cyclical communication with telegrams:

The cyclical communication is used for exchanging real-time data (for example, position) and is
executed once in every communication cycle (CycleTime). Certain specified data are
transferred from the controller to all drives and from all drives to the controller in every cycle.

 Non-cyclical communication with function blocks of the LMC078_Sercos3 library
(see page 271).
Non-cyclical communication is used to exchange data such as parameters for configuring
communication, the drive parameters, status, and so on, where time is not a critical factor. The
controller controls non-cyclical communication. All of the parameters in the system can be
contacted using this channel, even parameters that are configured cyclically.

NOTE: The two types of communication can be used simultaneously.

Cyclical Data Exchange
The exchange of information between the motion controller (Sercos master) and the servo drives
(slaves), is accomplished via a message structure known as a telegram. There are three telegrams
defined by IEC 61491:
 MST (Master Synchronization Telegram): An MST telegram is broadcast by the master at the

beginning of each transmission cycle to synchronize the timing of the cycle.
 MDT (Master Data Telegram): An MDT telegram is sent by the master once during each

transmission cycle to transmit data (command values) to the servo drives (slaves).
 AT (Acknowledge Telegram): AT telegrams are sent by the slaves to the master (feedback

values).
200 EIO0000001909 03/2018

Sercos Configuration
This illustration presents the 3 types of telegrams:

This topic discusses only the MDT and AT telegram types. A general telegram structure is shown
below:

The administrative segment of the telegram, which includes the telegram delimiter (start), address
field, frame check sequence, and telegram delimiter (end), are required for the transmission of all
telegrams.
Within the telegram, real-time data (operation data) is transmitted in the configurable data field
during each communication cycle. The specification of this data is provided by an identification
number (IDN).
Sercos enables the processing cycle of the controller to be synchronized with data exchange and
the control cycle in the drive. Therefore, there is no interference between these individual cycles,
and the control loops have a minimum, constant dead time. Moreover, the new reference value
goes into effect in all drives at the same time and all bus slaves record the measured values that
they forward to the controller as actual values at the same time.
EIO0000001909 03/2018 201

Sercos Configuration
IDN Description
IEC 61491 assigns identification numbers (IDNs) to all the operation data in a Sercos drive.
Operation data includes parameters, interface procedure commands, and command and feedback
values.
There are two categories of IDNs available:
 Standard IDNs (S): They are defined by the Sercos standard IEC 61491. Standard IDNs, if

supported by a Sercos drive, behave the same, irrespective of the drive manufacturer.
 Proprietary IDNs (P): They are reserved for product-specific data that can be defined by the

manufacturers of control units and servo drives.
NOTE: For complete, detailed information on Sercos IDNs that are implemented in the LXM32S
drives, refer to the Lexium LXM32S Product Manual.
The IDNs are normally 16-bit or 32-bit binary parameters of a Sercos drive. IDNs are identified in
the following way:
 S-0-0047.0.0 standard IDN: Position command value
 P-0-3017.0.12 manufacturer-defined IDN: Current limitation
The -0- refers to parameter sets. Many Sercos drives (including the Lexium) do not support
parameter sets.
202 EIO0000001909 03/2018

Sercos Configuration
Sercos Interface Configuration

Introduction
The Sercos configuration window allows you to configure and view the Sercos interface
parameters.

Sercos Interface Configuration
To access the Sercos configuration window, double-click the SERCOSIII node in the Devices tree.
The Configuration window is displayed as below:

This table describes the parameters of the Sercos interface:

Parameter Access Param.
type

Data
type

Value Default
value

Description

Common
Name R/W(*) EF STRING “ “ Symbolic name of the

configuration object.
CycleTime R/W ER DINT 1000000

2000000
4000000

1000000 Defines the Sercos bus cycle
time
in ns.
The CycleTime can be set
to either 1 ms, 2 ms or 4 ms.
If the CycleTime is changed,
the controller must be reset.
EIO0000001909 03/2018 203

Sercos Configuration
Topology R AF DINT
Enum

no link / 0
line P1 / 1
line P2 / 2
double line / 3
ring / 4
defect ring / 8

no link / 0 Describes the topology of the
Sercos system:
 0 = No Sercos device

connected.
 1 = All Sercos devices are

connected to port 1.
 2 = All Sercos devices are

connected to port 2.
 3 = Sercos devices are

connected to port 1 and
port 2.

 4 = The connection from
port 1 to port 2 is closed
(the ring is closed).

 8 = Invalid ring topology,
topology switchover not
yet completed.

ScannedDevices R AD DINT - - Number of physically
scanned Sercos devices.

UsedDevices R AD DINT - - Number of configured and
physically assigned Sercos
devices.

LastDeviceP1 R AD STRING “ “ Name of the last physical
Sercos device on port 1.

LastDeviceP2 R AD STRING “ “ Name of the last physical
Sercos device on port 2.

Parameter Access Param.
type

Data
type

Value Default
value

Description
204 EIO0000001909 03/2018

Sercos Configuration
Phase control
State R AD DINT

Enum
Phase 0 / 0
Phase 1 / 1
Phase 2 / 2
Phase 3 / 3
Phase 4 / 4
Firmware
download / 5
Phase 6 / 6
Bus scan / 7
Reinit Sercos / 8
Init / 10
Error / 11
Continuous light / 12
Zero bit stream / 13

Phase 0 / 0 Displays the Sercos system
state:
 0 = Configuration and

startup.
 1 = Normal operation,

Sercos phase 1.
 2 = Normal operation,

Sercos phase 2.
 3 = Normal operation,

Sercos phase 3.
 4 = Normal operation,

Sercos phase 4.
 5 = Firmware download in

progress.
 6 = Reserved
 7 = Bus scan in progress.
 8 = Sercos reinitialization

in progress.
 10 = Occurs only briefly

during the booting of the
system.

 11 = A Sercos error has
been detected in the
operating phase.

 12 = Not applicable (for
optical connection).

 13 = Not applicable (for
optical connection).

Parameter Access Param.
type

Data
type

Value Default
value

Description
EIO0000001909 03/2018 205

Sercos Configuration
(*) For more information on the parameter access rights, refer to Parameter Types (see page 27).
(1)Once the 'PhaseSet' parameter indicates the active exchange of real-time date, a reinitialization
of the axes is required for the synchronization of position.

PhaseSet R/W EF DINT 0...4 4 You can use this parameter to
preset the required
communication phase of the
Sercos bus: (1)

 0...3 = The tasks of the
program are started
simultaneously with the
Sercos run-up.

 4 = The program tasks
start is delayed until:
 The Sercos run-up has

reached phase 4
(State = 4).

 The Sercos run-up is
canceled by a start-up
error (State = 11).

—
ObjectType R AD STRING SERC32 SERC32 Object type.
stLogicalAd-
dress

R AD ST_Log-
icalAd-
dress

- - Logical address of the Sercos
parameters.
LogicalAddress =
STRUCT (udiType,
udiInstance,
udiParameterId)

Parameter Access Param.
type

Data
type

Value Default
value

Description

NOTICE
POSITION LOSS DUE TO THE SERCOS BUS PHASE CHANGE
Programmatically ensure the reinitialization or homing of the motion system when first arriving at
Sercos phase 4.
Failure to follow these instructions can result in equipment damage.
206 EIO0000001909 03/2018

Sercos Configuration
Sercos Operating Phases
This table describes the Sercos operating phases (phases 0...4):

Operating
phase

Description

Phase 0 Verify whether the number of connected devices remains constant and which topology is
used. Then, a switchover to phase 1 is effected with the determined topology.

Phase 1 Verify whether the slaves can be contacted. To do this, all of the configured slaves are briefly
addressed. If all configured bus slaves in the ring can be contacted, communication phase 2
becomes active.

Phase 2 The master exchanges important communication parameters and data on general device
properties with each slave sequentially. This defines and fixes the configuration of the cyclical
channel. If all bus slaves are configured, communication phase 3 becomes active.

Phase 3 Parameter phase: The master exchange parameters with the slaves. All slaves can be
addressed at once. Real-time data is not available yet.

Phase 4 Operating phase: Cyclical exchange of real-time data (cyclical communication). Any number
of parameters can be read and written using the service channel (non-cyclical
communication).
EIO0000001909 03/2018 207

Sercos Configuration
Sercos Devices

Introduction
The Modicon LMC078 Motion Controller supports the following Sercos devices:
 Lexium LXM32S drives
 TM5NS31 Sercos interface modules
 Third-party Sercos devices

Adding a Sercos Device
There are two ways to add Sercos devices:
 Using the Device Addressing Editor (see page 209).
 Using the method described below.
To add a Sercos device, select Lexium 32 S or TM5NS31 Interface in the Hardware Catalog, drag
it to the Devices tree, and drop it on the SERCOSIII node.
For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)

Adding a Third-Party Sercos Device
You can also add Sercos Devices from Third-Party Vendors (see SoMachine, Programming
Guide).
NOTE: Depending on the third-party vendor, it may be necessary to set the parameter Producer-
CycleTime of the Sercos device to a value deviating from the default value (1 ms). For detailed
information, refer to the specification in the device documentation provided by the third-party
vendor.
208 EIO0000001909 03/2018

Sercos Configuration
Device Addressing Editor

Introduction
The Device Addressing editor supports the following functions:
 Scan of the devices connected to the Sercos bus
 Add new Sercos devices
 Define identification parameters of the Sercos devices
To access to the Device Addressing tool, select the Tools tree tab and double-click Device
Addressing:

Designation Description
Devices in the PLC
Configuration

The left part of the editor window displays the LXM32S drives and the TM5NS31
interface modules of the Sercos configuration in the controller project.

NOTE: If the Sercos objects are assigned automatically, they are listed in the
order of their topological address, starting with the lowest value. If Sercos objects
from a previous scan are already listed, any further Sercos objects are added at
the end of the list, in the order of the topological address, starting with the lowest
value.

Operation Mode
(see page 212)

The operating mode is used to determine the way this device operates.

NOTE: If you change a value in this column while pressing and holding the shift
key, all values of this column are set to this value.
EIO0000001909 03/2018 209

Sercos Configuration
NOTE: The functions of the Device addressing editor are only available in offline mode.
The color coding of a row indicates whether a login can be performed for the specific Sercos object
in the controller configuration and, if so, whether a login is possible.
The colors have the following meanings:

Start Sercos scan Click this button to start searching for real LXM32S drives and the TM5NS31
interface modules that are connected to the Sercos bus.
To perform the search:
 The Sercos bus is switched to phase 0 (see page 207).
 All applications are stopped.
 All diagnostic messages must be confirmed.

Scanned devices After performing a scan, the right part of the editor window displays the LXM32S
drives and the TM5NS31 interface modules that are connected to the Sercos bus.
The column header presents the number of devices scanned and the number of
devices assigned automatically. All devices that were automatically assigned are
highlighted in a non-white color. You can manually change the assignment later on
by using a drop-down list in the right-most column.

<-- Click this button to apply the values of the Sercos device assigned in this row.
Adopt values of all
assigned devices

After having assigned all LXM32S drives and TM5NS31 interface modules, click
this button to apply the device data of the scanned Sercos devices in the assigned
objects in the Sercos node of the controller configuration.

Add Click this button to add some new devices to the Sercos node of the controller
configuration.

Color Description
Green Login can be performed with this object.
Red Login cannot be performed with this object.
White No Sercos device is assigned to this object.
Yellow Login to this object is uncertain. There are deviations in values of the assigned Sercos

device. The mismatched values are highlighted in bold.
Pink Login to this object is uncertain. However, no Sercos device was assigned after

performing the Sercos scan ([Start Sercos scan]) even though the Operating mode is
set to Real.

Designation Description
210 EIO0000001909 03/2018

Sercos Configuration
Sercos Scan
After scanning (Start SERCOS scan button]), the program attempts to assign Sercos objects from
the controller configuration to the devices connected to the Sercos bus by using the topological
address. All devices that were automatically assigned are highlighted in a non-white color.
The column header presents the number of devices scanned and the number of devices assigned
automatically:

You can manually change the automatic assignment later on by using a drop-down list in the right-
most column:

 Click the button in the row that you want to change. The drop-down list displays all Sercos
devices of this type that have not been assigned yet.

 Select the desired device from the list.
NOTE: You can use the empty row at the bottom of the list to reset an assignment.
Each row of the selection list contains a short description of the Sercos device.
The values are separated by a vertical bar ("|") and correspond to the following parameters:
 TopologyAddress
 ObjectType
 SerialNumber
 ConfiguredApplicationType
 SercosAddress

You have two possibilities to adopt the parameter values:
 You can apply the values of an assigned device by clicking the <-- button.
 You can apply the values of all assigned devices by clicking the Adopt values of all assigned

devices.
As you apply these values, the program writes the values of the assigned and scanned Sercos
devices that are required for commissioning into the related Sercos objects in the controller
configuration.
NOTE: After the values have been applied, the corresponding row is highlighted in green.
EIO0000001909 03/2018 211

Sercos Configuration
Operation Mode
The Operation mode is used to determine the way a Sercos device operates.
Select the desired operating mode in the drop-down list in the Operation mode column:

NOTE: If you change a value in this column while pressing and holding the shift key, all values of
this column are set to this value.

Add Devices Manually
In the Device Addressing editor, you can add manually some new devices to the controller
configuration.
To add devices manually, proceed as follows:

NOTE: If an error is detected when adding a device, the devices that could not be added are listed
with a respective explanation in the message window.

Operation mode Description
Virtual The Sercos device does not exist physically.
Real The Sercos device must exist physically.
Deactivated The Sercos device is not in use.

It may exist physically.
Optional The Sercos device may exist physically, but this is not a prerequisite.

Step Action
1 Enter the desired number of the new devices.
2 Select the desired device from the list:

 LXM32S: Lexium 32S drive
 TM5NS31: TM5 Sercos interface module

3 Click Add.
Result: The devices are added to the controller configuration.
212 EIO0000001909 03/2018

Sercos Configuration
Lexium LXM32S Drive Configuration

Description
To access to the device editor screen, double-click the drive node in the Devices tree:

The device editor screen of the LXM32S drive contains the followings tabs:
 Sercos Cyclic Data Exchange:
 Configuration of the Sercos address of the drive.
 Configuration of the Operating mode (see page 212) of the drive.
 Configuration of the Sercos implicit exchanges (IDN configuration of MDT and AT

telegrams).
 I/O Mapping: This tab allows you to create and assign IEC variables to the IDN selected for

cyclical exchanges.
 Configuration: Configuration parameters of the drive (use the Sercos Cyclic Data Exchange tab

to configure drive parameters).
 Information: This tab displays general information about the device (name, description,

provider, version, image).
EIO0000001909 03/2018 213

Sercos Configuration
NOTE:
The default configuration of the cyclical exchange contains four IDN, not editable:
 MDT telegram (controller to drive):
 Position command value: S-0-0047.0.0
 SPDSercos3Control: P-0-3025.0.80

 AT telegram (drive to controller):
 Position feedback value: S-0-0051.0.0
 SPDSercos3Status: P-0-3025.0.81

For more information about the IDN implemented in the LXM32S drives, refer to the Lexium
LXM32S Product Manual.

Expert Setting Configuration
The expert setting option allows you to modify the list of Sercos IDN exchanged cyclically between
the controller and the drive.
NOTE: The total IDN length of the MDT and AT telegrams is limited to 48 bytes.
To activate the expert setting, tick the check box Enable expert settings:
214 EIO0000001909 03/2018

Sercos Configuration
The following buttons are now available:

To add an IDN to the MDT or AT telegram, proceed as fo follows:

Button Description
+ Click this button to add an IDN to the list (see description here-after).
– Select an IDN in the list and click this button to remove an IDN from the list.
Up arrow Select an IDN in the list and click this button to move up the IDN in the list.
Down arrow Select an IDN in the list and click this button to move down the IDN in the list.

Step Action
1 Click +.

Result: The following dialog box appears:

2 Select the IDN to add in the list.
3 Click Ok.

Result: The IDN is added to the MDT or AT telegram and the number of bytes used is updated
(Real time channel utilization).
EIO0000001909 03/2018 215

Sercos Configuration
TM5NS31 Sercos Interface Module

Power Consumption
To display the estimated power consumption of the expansion modules:

NOTE: The current consumption figures presented by the Power consumption function are based
on assumed values, and not on actual current measurements. The assumed values for the outputs
are based on classic loads but can be adjusted using the 24 Vdc I/O segment external current
setting in the I/O Configuration tab of each module. The assumptions for input signals are based
on known internal loads and are therefore not modifiable. While the use of the Power consumption
function to test the power budget is required, it is no substitute for actual and complete system
testing and commissioning. Refer to the TM5 / TM7 System Planning and Installation Guide.

Step Action
1 Right-click the TM5NS31 Interface node of the Device tree.
2 Select Power consumption.
216 EIO0000001909 03/2018

Sercos Configuration
Sercos Error Codes

Sercos Slave Error Messages
4-digit codes identify error messages reported to the master by Sercos slaves. The following are
standard Sercos error codes:

Error code Description Comment
0x0nnn General error –
0x0000 No error in the service channel –
0x0001 Service channel not open –
0x0009 Invalid access to closing the service channel –
0x1nnn Element 1 Identification number
0x1001 IDN not supported –
0x1009 Invalid access to element 1 –
0x2nnn Element 2 Name
0x2001 Name not supported –
0x2002 Name transmission too short Master set “last transmission” too early
0x2003 Name transmission too long Master does not set “last transmission”
0x2004 Name cannot be changed Name is read only
0x2005 Name is write-protected –
0x3nnn Element 3 Attribute
0x3002 Attribute transmission too short Master set “last transmission” too early
0x3003 Attribute transmission too long Master does not set “last transmission”
0x3004 Attribute cannot be changed Attribute is read only
0x3005 Attribute is write-protected –
0x4nnn Element 4 Unit
0x4001 Unit not supported –
0x4002 Unit transmission too short Master set “last transmission” too early
0x4003 Unit transmission too long Master does not set “last transmission”
0x4004 Unit cannot be changed Unit is read only
0x4005 Unit is write-protected –
0x5nnn Element 5 Minimum input value
0x5001 Minimum input value not supported –
0x5002 Minimum input value transmission too short Master set “last transmission” too early
0x5003 Minimum input value transmission too long Master does not set “last transmission”
0x5004 Minimum input value cannot be changed Minimum input value is read only
EIO0000001909 03/2018 217

Sercos Configuration
0x5005 Minimum input value is write-protected –
0x6nnn Element 6 Maximum input value
0x6001 Maximum input value not supported –
0x6002 Maximum input value transmission too short Master set “last transmission” too early
0x6003 Maximum input value transmission too long Master does not set “last transmission”
0x6004 Maximum input value cannot be changed Maximum input value is read only
0x6005 Maximum input value is write-protected –
0x7nnn Element 7 Operation data
0x7002 Operation data transmission too short Master set “last transmission” too early
0x7003 Operation data transmission too long Master does not set “last transmission”
0x7004 Operation data cannot be changed Operation data is read only
0x7005 Operation data is write-protected at this

communication phase
–

0x7006 Operation data is smaller that the minimum input
value

–

0x7007 Operation data is greater than the maximum input
value

–

0x7008 Invalid operation data The invalid operation data may be an
unsupported:
 bit number or bit combination,
 value, code or
 configured IDN

0x7009 Operation data write-protected by a password –
0x700A Operation data is write-protected, it is configured

cyclically
IDN is configured in the MDT or AT. Therefore
writing via the service channel is not allowed

0x700B Invalid indirect addressing e.g., data container, list handling, etc
0x700C Operation data is write-protected, due to other

settings
e.g., operation mode, sub-device is enabled,
setting of communication version, etc

0x700D Invalid floating point number –
0x700E Operation data is write-protected at

parametrization level
–

0x700F Operation data is write-protected at operating
level

–

0x7010 Procedure command already active –
0x7011 Procedure command not interruptible –
0x7012 Procedure command not executable e.g., in this phase the procedure command can

not be activated
0x7013 Procedure command not executable The corresponding parameters are invalid

Error code Description Comment
218 EIO0000001909 03/2018

Sercos Configuration
0x7014 The received current length of list parameter does
not match to expectation

–

0x7015 Operation data is not yet created completely If it takes more time to create the operation data,
try again later

0x71nn Segment wise transmission of list parameters via
SVC

–

0x7101 IDN in S-0-0394 not valid –
0x7102 Empty list in S-0-0397 not allowed for write

access
–

0x7103 Maximum length of the list in S-0-0394 is
exceeded by take-over of the list segment

–

0x7104 Read access only: the length of the list segment
as of the list index exceeds the current length of
the list in S-0-0394

–

0x7105 IDN in S-0-0394 is write-protected –
0x7106 Operation data in list segment is smaller than the

minimum input value
–

0x7107 Operation data in list segment is greater than the
maximum input value

–

0x7108 Invalid list index in IDN S-0-0395 –
0x7109 Parameter in IDN S-0-0394 does not have

variable length
–

0x710A IDN S-0-0397 not permitted as operation data in
S-0-0394

–

0x8nnn Reserved for master internal error codes Error codes may be defined by the manufacturer
of control units (e.g., NC, PLC)

0xAnnn Reserved –
0xBnnn Reserved –
0xCnnn Reserved for slave specific error codes Used for error analysis and trace functionality

(troubleshooting)
0xDnnn Error codes are not generated and transmitted via

SVC
Error codes are defined by a TWG of Sercos

0xD000 No error –
0xD001 Service channel (temporarily) not available –
0xD002 Service channel engaged by an application –
0xD003 Service channel busy, slave is processing

previous request
–

0xD004 Sercos slave not reachable –
0xD005 Service channel transaction aborted –

Error code Description Comment
EIO0000001909 03/2018 219

Sercos Configuration
NOTE: All other error codes are reserved.

Sercos Master Error Messages
If errors are recognized by the Sercos master, they are specified either as a 5-digit hexadecimal
value, or a negative decimal value.

0xD006 Writing this element is not supported by the
service channel

–

0xEnnn Reserved for master internal error codes –
0xFnnn Reserved for master internal error codes –

Error code Description Comment

Error Code Description
20001 SVC: New request with higher priority during active internal request
20002 SVC: New internal request during active internal request
20003 SVC: Transmission canceled by another function call with higher priority
20004 SVC: New transmission requested but MBusy is not set
20005 SVC: Invalid state: AHS != MHS during set BusyAT
20006 SVC: Timeout because slave has not set the BusyAT flag
20007 SVC: Timeout because slave has set BusyAT flag for too long
20008 SVC: Write with unsupported element (allowed 1 or 7)
20009 SVC: Write with data length = zero
-1 Other error
-431 Service request error (e.g. timeout)
-445 Service timeout
-467 Internal state machine error
220 EIO0000001909 03/2018

Modicon LMC078
Serial Line Configuration
EIO0000001909 03/2018
Serial Line Configuration

Chapter 14
Serial Line Configuration

Introduction
This chapter describes how to configure the serial line communication of the Modicon LMC078
Motion Controller.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Serial Line Configuration 222
ASCII Manager 224
SoMachine Network Manager 226
Modbus Serial IOScanner 227
Adding a Device on the Modbus Serial IOScanner 229
Modbus Manager 236
Adding a Modem to a Manager 240
EIO0000001909 03/2018 221

Serial Line Configuration
Serial Line Configuration

Introduction
The Serial Line configuration window allows you to configure the physical parameters of a serial
line (baud rate, parity, and so on).

Serial Line Configuration
To configure a Serial Line, double-click Serial line in the Devices tree.
The Configuration window is displayed as below:

The following parameters must be identical for each serial device connected to the port.

Element Description
Baud rate Transmission speed in bits/s
Parity Used for error detection
Data bits Number of bits for transmitting data
Stop bits Number of stop bits
Physical Medium Specify the medium to use:

 RS485 (using polarisation resistor or not)
 RS232

Polarization
Resistor

Polarization resistors are integrated in the controller. They are switched on or off by this
parameter.
222 EIO0000001909 03/2018

Serial Line Configuration
The serial line ports of your controller are configured for the SoMachine protocol by default when
new or when you update the controller firmware. The SoMachine protocol is incompatible with that
of other protocols such as Modbus Serial Line. Connecting a new controller to, or updating the
firmware of a controller connected to, an active Modbus configured serial line can cause the other
devices on the serial line to stop communicating. Make sure that the controller is not connected to
an active Modbus serial line network before first downloading a valid application having the
concerned port or ports properly configured for the intended protocol.

This table indicates the maximum baud rate value of the managers:

NOTICE
INTERRUPTION OF SERIAL LINE COMMUNICATIONS
Be sure that your application has the serial line ports properly configured for Modbus before
physically connecting the controller to an operational Modbus Serial Line network.
Failure to follow these instructions can result in equipment damage.

Manager Maximum Baud Rate (Bits/S)
SoMachine Network Manager 115200
Modbus Manager
ASCII Manager
Modbus IOScanner
EIO0000001909 03/2018 223

Serial Line Configuration
ASCII Manager

Introduction
The ASCII manager is used to transmit and/or receive data with a simple device.

Adding the Manager
To add an ASCII manager to your controller, select the ASCII Manager in the Hardware Catalog,
drag it to the Devices tree, and drop it on one of the highlighted nodes.
For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)

ASCII Manager Configuration
To configure the ASCII manager of your controller, double-click ASCII Manager in the Devices
tree.
The ASCII Manager configuration window is displayed as below:
224 EIO0000001909 03/2018

Serial Line Configuration
Set the parameters as described in this table:

NOTE: In the case of using several frame termination conditions, the first condition to be TRUE will
terminate the exchange.

Adding a Modem
To add a Modem to the ASCII manager, refer to Adding a Modem to a Manager (see page 240).

Parameter Description
Start Character If 0, no start character is used in the frame. Otherwise, in Receiving Mode, the

corresponding character in ASCII is used to detect the beginning of a frame. In Sending
Mode, this character is added at the beginning of the frame.

First End
Character

If 0, no first end character is used in the frame. Otherwise, in Receiving Mode, the
corresponding character in ASCII is used to detect the end of a frame. In Sending Mode,
this character is added at the end of the frame.

Second End
Character

If 0, no second end character is used in the frame. Otherwise, in Receiving Mode, the
corresponding character in ASCII is used to detect the end of a frame. In Sending Mode,
this character is added at the end of the frame.

Frame Length
Received

If 0, this parameter is not used. This parameter allows the system to conclude an end of
frame at reception when the controller received the specified number of characters.
Note: This parameter cannot be used simultaneously with Frame Received Timeout (ms).

Frame Received
Timeout (ms)

If 0, this parameter is not used. This parameter allows the system to conclude the end of
frame at reception after a silence of the specified number of ms.

Serial Line
Settings

Parameters specified in the Serial Line configuration window (see page 222).
EIO0000001909 03/2018 225

Serial Line Configuration
SoMachine Network Manager

Introduction
Use the SoMachine Network Manager to exchange variables with a XBTGT/XBTGK Advanced
Panel with SoMachine software protocol, or when the Serial Line is used for SoMachine
programming.

Adding the Manager
To add a SoMachine Network Manager to your controller, select the SoMachine-Network Manager
in the Hardware Catalog, drag it to the Devices tree, and drop it on one of the highlighted nodes.
For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)

Configuring the Manager
There is no configuration for SoMachine Network Manager.

Adding a Modem
To add a modem to the SoMachine Network Manager, refer to Adding a Modem to a Manager
(see page 240).
226 EIO0000001909 03/2018

Serial Line Configuration
Modbus Serial IOScanner

Introduction
The Modbus IOScanner is used to simplify exchanges with Modbus slave devices.

Add a Modbus IOScanner
To add a Modbus IOScanner on a Serial Line, select the Modbus_IOScanner in the Hardware
Catalog, drag it to the Devices tree, and drop it on one of the highlighted nodes.
For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)

Modbus IOScanner Configuration
To configure a Modbus IOScanner on a Serial Line, double-click Modbus IOScanner in the Devices
tree.
The configuration window is displayed as below:

Set the parameters as described in this table:

NOTE: Do not use function blocks of the PLCCommunication library on a serial line with a Modbus
IOScanner configured. This disrupts the Modbus IOScanner exchange.

Element Description
Transmission
Mode

Specifies the transmission mode to use:
 RTU: uses binary coding and CRC error-checking (8 data bits)
 ASCII: messages are in ASCII format, LRC error-checking (7 data bits)

Set this parameter identical for each Modbus device on the network.
Response Timeout
(ms)

Timeout used in the exchanges.

Time between
Frames (ms)

Delay to reduce data collision on the bus.
Set this parameter identical for each Modbus device on the network.
EIO0000001909 03/2018 227

Serial Line Configuration
Bus Cycle Task Selection
The Modbus IOScanner and the devices exchange data at each cycle of the chosen application
task.
To select this task, select the Modbus Master IO Mapping tab. The configuration window is
displayed as below:

The Bus cycle task parameter allows you to select the application task that manages the scanner:
 Use parent bus cycle setting: associate the scanner with the application task that manages the

controller.
 MAST: associate the scanner with the MAST task.
 Another existing task: you can select an existing task and associate it to the scanner. For more

information about the application tasks, refer to the SoMachine Programming Guide.
The scan time of the task associated with the scanner must be less than 500 ms.
228 EIO0000001909 03/2018

Serial Line Configuration
Adding a Device on the Modbus Serial IOScanner

Introduction
This section describes how to add a device on the Modbus IOScanner.

Add a Device on the Modbus IOScanner
To add a device on the Modbus IOScanner, select the Generic Modbus Slave in the Hardware
Catalog, drag it to the Devices tree, and drop it on the Modbus_IOScanner node of the Devices
tree.
For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)
NOTE: The variable for the exchange is automatically created in the %IWx and %QWx of the Modbus
Serial Master I/O Mapping tab.

Configure a Device Added on the Modbus IOScanner
To configure the device added on the Modbus IOScanner, proceed as follow:

Step Action
1 In the Devices tree, double-click Generic Modbus Slave.

Result: The configuration window is displayed.

2 Enter a Slave Address value for your device (choose a value from 1 to 247).
3 Choose a value for the Response Timeout (in ms).
EIO0000001909 03/2018 229

Serial Line Configuration
To configure the Modbus Channels, proceed as follow:

Step Action
1 Click the Modbus Slave Channel tab:
230 EIO0000001909 03/2018

Serial Line Configuration
2 Click the Add Channel button:
Step Action
EIO0000001909 03/2018 231

Serial Line Configuration
3 Configure an exchange:
In the field Channel, you can add the following values:
 Channel: Enter a name for your channel.
 Access Type: Choose the exchange type: Read or Write or Read/Write multiple registers

(i.e. %MW) (see page 235).
 Trigger: Choose the trigger of the exchange. It can be either CYCLIC with the period

defined in Cycle Time (ms) field or started by a RISING EDGE on a boolean variable (this
boolean variable is then created in the Modbus Master I/O Mapping tab).

 Comment: Add a comment about this channel.

In the field READ Register (if your channel is Read or Read/Write one), you can configure the
%MW to be read on the Modbus slave. Those will be mapped on %IW (see Modbus Master I/O
Mapping tab):
 Offset: Offset of the %MW to read. 0 means that the first object that will be read will be %MW0.
 Length: Number of %MW to be read. For example, if 'Offset' = 2 and 'Length' = 3, the channel

will read %MW2, %MW3 and %MW4.
 Error Handling: choose the behavior of the related %IW in case of loss of communication.

In the fieldWRITE Register (if your channel is Write or Read/Write one), you can configure the
%MW to be written to the Modbus slave. Those will be mapped on %QW (see Modbus Master I/O
Mapping tab):
 Offset: Offset of the %MW to write. 0 means that the first object that will be written will be

%MW0.
 Length: Number of %MW to be written. For example, if 'Offset' = 2 and 'Length' = 3, the

channel will write %MW2, %MW3 and %MW4.

5 Click OK to validate the configuration of this channel.

NOTE: You can also:
 Click the Delete button to remove a channel.
 Click the Edit button to change the parameters of a channel.

Step Action
232 EIO0000001909 03/2018

Serial Line Configuration
To configure your Modbus Initialization Value, proceed as follow:

Step Action
1 Click the Modbus Slave Init tab:
EIO0000001909 03/2018 233

Serial Line Configuration
2 Click New to create a new initialization value:

The Initialization Value window contains the following parameters:
 Access Type: Choose the exchange type: Read or Write or Read/Write multiple registers

(that is, %MW) (see page 235).
 Register Offset: Register number of register to be initialized.
 Length: Number of %MW to be read. For example, if 'Offset' = 2 and 'Length' = 3, the channel

will read %MW2, %MW3 and %MW4.
 Initialization Value: Value the registers are initialized with.
 Comment: Add a comment about this channel.

4 Click OK to create a new Initialization Value.

NOTE: You can also:
 Click Move up to change the position of a value in the list.
 Click Delete to remove a value in the list.
 Click Edit to change the parameters of a value.

Step Action
234 EIO0000001909 03/2018

Serial Line Configuration
To configure your Modbus Master I/O Mapping, proceed as follow:

Access Types
This table describes the different access types available:

Step Action
1 Click the Modbus Master I/O Mapping tab:

2 Double-click in a cell of the Variable column to open a text field.
Enter the name of a variable or click the browse button [...] and chose a variable with the Input
Assistant.

3 For more information on I/O mapping, refer to SoMachine Programming Guide.

Function Function Code Availability
Read Coils 1 ModbusChannel
Read Discrete Inputs 2 ModbusChannel
Read Holding Registers (default
setting for the channel configuration)

3 ModbusChannel

Read Input Registers 4 ModbusChannel
Write Single Coil 5 ModbusChannel

Initialization Value
Write Single Register 6 ModbusChannel

Initialization Value
Write Multiple Coils 15 ModbusChannel

Initialization Value
Write Multiple Registers (default
setting for the slave initialization)

16 ModbusChannel
Initialization Value

Read/Write Multiple Registers 23 ModbusChannel
EIO0000001909 03/2018 235

Serial Line Configuration
Modbus Manager

Introduction
The Modbus Manager is used for Modbus RTU or ASCII protocol in master or slave mode.

Adding the Manager
To add a Modbus manager to your controller, select the Modbus Manager in the Hardware
Catalog, drag it to the Devices tree, and drop it on one of the highlighted nodes.
For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)

Modbus Manager Configuration
To configure the Modbus Manager of your controller, double-click Modbus Manager in the Devices
tree.
The Modbus Manager configuration window is displayed as below:

Set the parameters as described in this table:

Element Description
Transmission
Mode

Specify the transmission mode to use:
 RTU: uses binary coding and CRC error-checking (8 data bits)
 ASCII: messages are in ASCII format, LRC error-checking (7 data bits)

Set this parameter identical for each Modbus device on the link.
Addressing Specify the device type:

 Master
 Slave
236 EIO0000001909 03/2018

Serial Line Configuration
Modbus Master
When the controller is configured as a Modbus Master, the following function blocks are supported
from the PLCCommunication Library:
 ADDM
 READ_VAR
 SEND_RECV_MSG
 SINGLE_WRITE
 WRITE_READ_VAR
 WRITE_VAR
For further information, see Function Block Descriptions (see SoMachine, Modbus and ASCII
Read/Write Functions, PLCCommunication Library Guide) of the PLCCommunication Library.

Modbus Slave
When the controller is configured as Modbus Slave, the following Modbus requests are supported:

Address Modbus address of the device, when slave is selected.
Time between
Frames (ms)

Time to avoid bus-collision.
Set this parameter identical for each Modbus device on the link.

Serial Line
Settings

Parameters specified in the Serial Line configuration window.

Element Description

Function Code
Dec (Hex)

Sub-Function
Dec (Hex)

Function

1 (1 hex) – Read digital outputs (%Q)
2 (2 hex) – Read digital inputs (%I)
3 (3 hex) – Read multiple register (%MW)
5 (5 hex) – Write single coil (%M)
6 (6 hex) – Write single register (%MW)
8 (8 hex) – Diagnostic
15 (F hex) – Write multiple digital outputs (%Q)
16 (10 hex) – Write multiple registers (%MW)
23 (17 hex) – Read/write multiple registers (%MW)
43 (2B hex) 14 (E hex) Read device identification
EIO0000001909 03/2018 237

Serial Line Configuration
This table contains the sub-function codes supported by the diagnostic Modbus request 08:

This table lists the objects that can be read with a read device identification request (basic identifi-
cation level):

The following section describes the differences between the Modbus memory mapping of the
controller and HMI Modbus mapping. If you do not program your application to recognize these
differences in mapping, your controller and HMI will not communicate correctly. Thus it will be
possible for incorrect values to be written to memory areas responsible for output operations.

When the controller and the Magelis HMI are connected via Modbus (HMI is master of Modbus
requests), the data exchange uses simple word requests.

Sub-Function Code Function
Dec Hex
10 0A Clears Counters and Diagnostic Register
11 0B Returns Bus Message Count
12 0C Returns Bus Communication Error Count
13 0D Returns Bus Exception Error Count
14 0E Returns Slave Message Count
15 0F Returns Slave No Response Count
16 10 Returns Slave NAK Count
17 11 Returns Slave Busy Count
18 12 Returns Bus Character Overrun Count

Object ID Object Name Type Value
00 hex Vendor code ASCII String Schneider Electric
01 hex Product code ASCII String Controller reference

LMC078CECS20T
02 hex Major / Minor revision ASCII String aa.bb.cc.dd (same as device descriptor)

WARNING
UNINTENDED EQUIPMENT OPERATION
Program your application to translate between the Modbus memory mapping used by the
controller and that used by any attached HMI devices.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
238 EIO0000001909 03/2018

Serial Line Configuration
There is an overlap on simple words of the HMI memory while using double words but not for the
controller memory (see following diagram). In order to have a match between the HMI memory
area and the controller memory area, the ratio between double words of HMI memory and the
double words of controller memory has to be 2.

The following gives examples of memory match for the double words:
 %MD2 memory area of the HMI corresponds to %MD1 memory area of the controller because

the same simple words are used by the Modbus request.
 %MD20 memory area of the HMI corresponds to %MD10 memory area of the controller

because the same simple words are used by the Modbus request.
The following gives examples of memory match for the bits:
 %MW0:X9 memory area of the HMI corresponds to %MX1.1 memory area of the controller

because the simple words are split in 2 distinct bytes in the controller memory.

Adding a Modem
To add a Modem to the Modbus Manager, refer to Adding a Modem to a Manager (see page 240).
EIO0000001909 03/2018 239

Serial Line Configuration
Adding a Modem to a Manager

Introduction
A modem can be added to the following managers:
 ASCII Manager
 Modbus Manager
 SoMachine Network Manager
NOTE: Use Modem TDW-33 (which implements AT & A1 commands) if you need a modem
connexion with SoMachine Network Manager.

Adding a Modem to a Manager
To add a modem to your controller, select the modem you want in the Hardware Catalog, drag it
to the Devices tree, and drop it on the manager node.
For more information on adding a device to your project, refer to:
• Using the Drag-and-drop Method (see SoMachine, Programming Guide)
• Using the Contextual Menu or Plus Button (see SoMachine, Programming Guide)
For further information, refer to Modem Library (see Modem Functions:, Modem Library).
240 EIO0000001909 03/2018

Modicon LMC078
Connecting a Modicon LMC078 Motion Controller to a PC
EIO0000001909 03/2018
Connecting a Modicon LMC078 Motion Controller to a PC

Chapter 15
Connecting a Modicon LMC078 Motion Controller to a PC

Connecting the Controller to a PC

Overview
To transfer, run, and monitor the applications, connect the controller to a computer that has
SoMachine installed, using either a USB cable or an Ethernet connection.

USB Mini-B Port Connection
TCSXCNAMUM3P: This USB cable is suitable for short duration connections such as quick

updates or retrieving data values.
BMXXCAUSBH045: Grounded and shielded, this USB cable is suitable for long duration

connections.
NOTE: You can only connect 1 controller to the PC at any one time.
NOTE: The LMC078 Motion Controller must be selected in the Gateway Management Console,
accessible by double-clicking the Gateway Management Console icon in the Windows
notification area. This option is not selected by default.

NOTICE
INOPERABLE EQUIPMENT
Always connect the communication cable to the PC before connecting it to the controller.
Failure to follow these instructions can result in equipment damage.
EIO0000001909 03/2018 241

Connecting a Modicon LMC078 Motion Controller to a PC
The USB Mini-B Port is the programming port you can use to connect a PC with a USB host port
using SoMachine software. Using a typical USB cable, this connection is suitable for quick updates
of the program or short duration connections to perform maintenance and inspect data values. It
is not suitable for long-term connections such as commissioning or monitoring without the use of
specially adapted cables to help minimize electromagnetic interference.

The communication cable should be connected to the PC first to minimize the possibility of
electrostatic discharge affecting the controller.
The following illustration presents the USB connection to a PC:

To connect the USB cable to your controller, follow the steps below:

WARNING
UNINTENDED EQUIPMENT OPERATION OR INOPERABLE EQUIPMENT
 You must use a shielded USB cable such as a BMX XCAUSBH0•• secured to the functional

ground (FE) of the system for any long-term connection.
 Do not connect more than one controller at a time using USB connections.
 Do not use the USB port(s), if so equipped, unless the location is known to be non-hazardous.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Step Action
1 1a If making a long-term connection using the cable BMXXCAUSBH045, or other cable with a

ground shield connection, securely connect the shield connector to the functional ground
(FE) or protective ground (PE) of your system before connecting the cable to your controller
and your PC.

1b If making a short-term connection using the cable TCSXCNAMUM3P or other non-grounded
USB cable, proceed to step 2.

2 Connect the USB cable connector to the PC.
3 Connect the Mini-B connector of your USB cable to the controller USB connector.
242 EIO0000001909 03/2018

Connecting a Modicon LMC078 Motion Controller to a PC
Ethernet Port Connection
You can also connect the controller to a PC using an Ethernet cable.
The following illustration presents the Ethernet connection to a PC:

To connect the controller to the PC, do the following:

NOTE: The default IP address (see page 172) is 190.201.100.100.

Step Action
1 Connect your Ethernet cable to the PC.
2 Connect your Ethernet cable to the Ethernet port on the controller.
EIO0000001909 03/2018 243

Connecting a Modicon LMC078 Motion Controller to a PC
244 EIO0000001909 03/2018

Modicon LMC078
Firmware Update
EIO0000001909 03/2018
Firmware Update

Chapter 16
Firmware Update

Updating Modicon LMC078 Motion Controller Firmware

Introduction
The firmware updates for Modicon LMC078 Motion Controller are available on the
http://www.schneider-electric.com website.
The firmware update is possible by using the Controller Assistant software.
The Controller Assistant provides two different ways to update the firmware:
 The first firmware update procedure automatically removes the application in the controller.
 The second firmware update procedure does not remove the application from the controller.

Firmware Update Automatically Removing the Application
Performing a firmware change deletes the current application program in the device, including the
Boot Application in the SD card.

If you remove power to the device, or there is a power outage or communication interruption during
the transfer of the application, your device may become inoperative. If a communication
interruption or a power outage occurs, reattempt the transfer. If there is a power outage or
communication interruption during a firmware update, or if an invalid firmware is used, your device
will become inoperative. In this case, use a valid firmware and reattempt the firmware update.

NOTICE
LOSS OF APPLICATION DATA
 Perform a backup of the application program to the hard disk of the PC before attempting a

firmware update.
 Restore the application program to the device after a successful firmware update.
Failure to follow these instructions can result in equipment damage.
EIO0000001909 03/2018 245

Firmware Update
Launch SoMachine Central and click Maintenance → Controller Assistant to open the Controller
Assistant.
To execute a complete firmware update of a controller, proceed as follows:

Firmware Update Without Removing the Application
Launch SoMachine Central and click Maintenance → Controller Assistant to open the Controller
Assistant.
To execute a complete firmware update of a controller without replacing the Boot application and
data, proceed as follows:

NOTICE
INOPERABLE EQUIPMENT
 Do not interrupt the transfer of the application program or a firmware change once the transfer

has begun.
 Re-initiate the transfer if the transfer is interrupted for any reason.
 Do not attempt to place the device (logic controller, motion controller, HMI controller or drive)

into service until the file transfer has completed successfully.
Failure to follow these instructions can result in equipment damage.

Step Action
1 On the Home dialog, click the Update firmware... button.

Result: The Update firmware dialog opens.
2 Proceed as described in the chapter Updating the Firmware of the SoMachine Controller Assistant

User Guide.

Step Action
1 On the Home dialog, click the Manage image... button.

Result: The Manage images dialog opens.
2 Click the Read from.... controller button.

Result: The Controller selection dialog opens.
3 Select the required connection type and controller and click the Reading button.

Result: The image is transmitted from the controller to the computer.
After this has been accomplished successfully, you are redirected to the Home dialog.

4 Click the button New / Process... and then Update firmware....
Result: The dialog for updating the firmware opens.

5 Execute individual steps for updating the firmware in the current image (Changes are only effected in
the image on your computer).
In the final step, you can create a backup copy of the image read by the controller.
Result: Following the update of the firmware, the Select next action dialog opens.
246 EIO0000001909 03/2018

Firmware Update
For more information about the firmware update and creating a new SD card with firmware, refer
to the SoMachine Controller Assistant User Guide.

6 On the Select next action dialog, click the Write on controller.... button.
Result: The Controller selection dialog opens.

7 Select the required connection type and controller and click the Write button.
Result: The image is transmitted from your computer to the controller.
After the transmission, you are redirected to the Home dialog.

Step Action
EIO0000001909 03/2018 247

Firmware Update
248 EIO0000001909 03/2018

Modicon LMC078

EIO0000001909 03/2018
Appendices
Overview
This appendix lists the documents necessary for technical understanding of the Modicon LMC078
Motion Controller Programming Guide.

What Is in This Appendix?
The appendix contains the following chapters:

Chapter Chapter Name Page
A How to Change the IP Address of the Controller 251
B Diagnostic Messages 255
C LMC078 Sercos3 Library 271
D Functions to Get/Set Serial Line Configuration in User Program 299
E Controller Performance 305
EIO0000001909 03/2018 249

250 EIO0000001909 03/2018

Modicon LMC078
ChangeIPAddress: Change IP Address of the Controller
EIO0000001909 03/2018
How to Change the IP Address of the Controller

Appendix A
How to Change the IP Address of the Controller

changeIPAddress: Change the IP address of the controller

Function Block Description
The changeIPAddress function block provides the capability to change dynamically a controller
IP address, its subnet mask and its gateway address. The function block can also save the
IP address so that it is used in subsequent reboots of the controller.
NOTE: Changing the IP addresses is only possible if the IP mode is configured to fixed IP address.
For more details, refer to IP Address Configuration (see page 169).
NOTE: For more information on the function block, use the Documentation tab of SoMachine
Library Manager Editor. For the use of this editor, refer SoMachine Programming Guide.

Graphical Representation

Parameter Description

Input Type Comment
xExecute BOOL  Rising edge: action starts.

 Falling edge: resets outputs. If a falling edge occurs before the
function block has completed its action, the outputs operate in the
usual manner and are only reset if either the action is completed
or in the event that an error is detected. In this case, the
corresponding output values (xDone, xError, iError) are
present at the outputs for exactly one cycle.

xSave BOOL TRUE: save configuration for subsequent reboots of the controller.
EIO0000001909 03/2018 251

ChangeIPAddress: Change IP Address of the Controller
changeIPAddress_Channel: Ethernet port to be configured
The changeIPAddress_Channel enumeration data type contains the following values:

eChannel changeIPAddress
_Channel

The input eChannel is the Ethernet port to be configured.
Depending on the number of the ports available on the controller, it is
one of 2 values (see page 252) in changeIPAddress_Channel (0
or 1).

i_abyIPAddress ARRAY[0..3] OF
BYTE

The new IP Address to be configured. Format: 0.0.0.0.

NOTE: If this input is set to 0.0.0.0 then the controller default IP
addresses (see page 172) is configured.

i_abyIPMask ARRAY[0..3] OF
BYTE

The new subnet mask. Format: 0.0.0.0

i_abyIPGateway ARRAY[0..3] OF
BYTE

The new gateway IP address. Format: 0.0.0.0

Input Type Comment

Output Type Comment
xDone BOOL TRUE: if IP Addresses have been successfully configured or if

default IP Addresses have been successfully configured because
input i_abyIPAddress is set to 0.0.0.0.

xBusy BOOL Function block active.
xError BOOL  TRUE: error detected, function block aborts action.

 FALSE: no error has been detected.
eError changeIPAd-

dress_Error
Error code of the detected error (see page 253).

xSaved BOOL Configuration saved for the subsequent reboots of the controller.
q_abyIPAddress ARRAY[0..3]

OF BYTE
Current controller IP address. Format: 0.0.0.0.

q_abyIPMask ARRAY[0..3]
OF BYTE

Current subnet mask. Format: 0.0.0.0.

q_abyIPGateway ARRAY[0..3]
OF BYTE

Current gateway IP address. Format: 0.0.0.0.

Enumerator Value Description
CHANNEL_ETHERNET_NETWORK 0 M241, M251MESC, M258, LMC058, LMC078: Ethernet port

M251MESE: Ethernet_2 port
CHANNEL_DEVICE_NETWORK 1 M241: TM4ES4 Ethernet port

M251MESE: Ethernet_1 port
252 EIO0000001909 03/2018

ChangeIPAddress: Change IP Address of the Controller
changeIPAddress_Error: Error Codes
The changeIPAddress_Error enumeration data type contains the following values:

Enumerator Value Description
ERR_NO_ERROR 00 hex No error detected.
ERR_UNKNOWN 01 hex Internal error detected.
ERR_INVALID_MODE 02 hex IP address is not configured as a fixed IP address.
ERR_INVALID_IP 03 hex Invalid IP address.
ERR_DUPLICATE_IP 04 hex The new IP address is already used in the network.
ERR_WRONG_CHANNEL 05 hex Incorrect Ethernet communication port.
ERR_IP_BEING_SET 06 hex IP address is already being changed.
ERR_SAVING 07 hex IP addresses not saved due to a detected error or no non-volatile

memory present.
EIO0000001909 03/2018 253

ChangeIPAddress: Change IP Address of the Controller
254 EIO0000001909 03/2018

Modicon LMC078
Diagnostic Messages
EIO0000001909 03/2018
Diagnostic Messages

Appendix B
Diagnostic Messages

Introduction
This chapter describes the diagnostic messages of the Modicon LMC078 Motion Controller.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
Message Logger 256
Diagnostic Messages 262
EIO0000001909 03/2018 255

Diagnostic Messages
Message Logger

Overview
The message logger records the important events on the controller. This information is
categorized, evaluated, and clearly displayed. In case an error is detected, this information helps
to solve a problem or localize the error.
To open the Message logger window, select the Tool tree and double-click the Message logger
node:

This data view displays the information of the message logger. For example, you can consecutively
call and process data of various message loggers from the controller. You can also add message
logger files which have previously been saved.
It is also possible to
 Save the displayed message loggers as a file.
 Remove the displayed message loggers from the list.
Further, it is possible to
 Provide every line with its own comment.
 Mark all lines with certain properties in a different color.
These options are available directly through the context menu (right-click).
The displayed time corresponds to the time the item was added to this dialog. The numbering is
continuous.
256 EIO0000001909 03/2018

Diagnostic Messages
You can open the selected message logger by clicking the plus (+) icon on the left of the logger.
To close it, click the minus (–) icon:

Some entries are highlighted in color. This helps you to find lines with comparable properties within
the message logger. You can adjust it using the context menu. After saving or sending and then
opening the file, the last selected color settings are retained.

Edit Comment
Select Edit comment from the context menu. You can add any comment for each entry. In this way,
you can add additional information, which provides an overview of the detected errors in case
service is required, even after a long time.

Copy
Select Copy from the context menu or press Ctrl+C. You can copy the contents of the selected line
to the Windows Clipboard and then paste them into any text processing application.
EIO0000001909 03/2018 257

Diagnostic Messages
Add Message Logger from Controller
Select Add message logger from controller from the context menu. The action creates a new
message logger in the data view. A new continuous numbering with the current time stamp is
created.

Reset Message Logger
Select Reset message logger from the context menu. This action locally creates an empty
message logger (that does not contain any messages) in the data view and also deletes the
message logger on the controller. All message logger entries of the controller are removed.

Save Message Logger to File
Select Save message logger to file from the context menu. A standard Windows dialog box opens.
Enter a file name and save the selected message logger to any directory.

Load Message Logger from File
Select Load message logger from file from the context menu. A standard Windows dialog box
opens. Use this dialog box to select the desired message logger which is saved in any directory.
The action creates a new message logger in the data view. A continuous numbering without the
current time stamp is created.

Import Message Logger from Controller
Select Import message logger from controller from the context menu. A standard Windows dialog
box opens. Use this dialog box to select the desired message logger which is saved on the
controller. The action creates a new message logger in the data view. A continuous numbering
without the current time stamp is created.

Remove Message Logger from List
Select Remove message logger from list from the context menu or press the Delete key. This
deletes the selected message logger from the list.
You can select several message loggers by pressing the Ctrl key.
258 EIO0000001909 03/2018

Diagnostic Messages
Mark Lines
In the message logger, you can mark (highlight) lines which contain certain properties in common
in different colors. For example, you can highlight all lines of Type 2 in pink. Or you can highlight
all lines with Diag. code = 8002 in lime green.
The following context menu presents the configuration that is described in the preceding
paragraph. The selection criteria are presented after the color highlighting.

Select Mark lines (xxx=yyy) from the context menu. A submenu which already presents some color
entries with their corresponding selection text opens. Here, as described in the example, with
Type=2 and Diag.code=8002.
You can define your own selection criteria. The selected text is determined by the last column
selected before the context menu was called. Proceed as follows:
Add/Change a color entry:

Step Action
1 Right-click the column with the desired selection criterion (for example, column header Diag.

Code and cell value 8014).
Result: The context menu opens.

2 Click Mark lines (Diag. code=8014).
Result: The submenu with the color selections opens.
EIO0000001909 03/2018 259

Diagnostic Messages
Delete a color entry:

Delete all color entries:

NOTE: It may happen that one line matches several valid color selection criteria. For example, the
colors green and red could correspond to the Diag.Code=8014. In this case, the color used is the
color that is listed lower in the context menu.
NOTE: If a color selection criterion has been applied to several colors, the marking with the highest
priority is removed first when unmarking.

Use Selected Line for Comparison
Select Use selected line for comparison from the context menu or press the Insert key. Thus, you
can highlight the selected line in bold in order to facilitate comparison with other lines. If you click
a different message, the time difference to this line marked in bold is presented in the status bar
(for example, Time difference: 0.00:03:36.992 of 500(1) with regard to 481(1)).

Do Not Compare
Select Do not compare from the context menu to reset a preliminary selected line for comparison
again and to remove the bold marking.

3 Choose a highlighting color, for example, blue.
Result: All lines with the selection criterion (Diag. code=8014) are highlighted in blue.

Step Action
1 Right-click the line with the color you want to remove in the message logger.

Result: The context menu opens.
2 Click Mark lines.

Result: The submenu with the color selections opens.
3 Click Unmark.

Result: All line highlighting with this color is unmarked.

Step Action
1 Right-click the line with the color you want to remove in the message logger.

Result:The context menu opens.
2 Click Mark lines.

Result: The submenu with the color selections opens.
3 Click Unmark all.

Result: All color markings are removed.

Step Action
260 EIO0000001909 03/2018

Diagnostic Messages
Expand/Collapse List
By selecting Expand/collapse list from the context menu, all message loggers can alternatively be
fully collapsed or expanded.
EIO0000001909 03/2018 261

Diagnostic Messages
Diagnostic Messages

Diagnostic Message Classes
This table describes the diagnostic message classes:

Diagnostic Messages
This table lists the diagnostic messages and their classes:

Diagnostic class Designation Priority
4 Error detected resulting in complete stop High
3 Error detected resulting in single stop (if the error is triggered

by an axis)
-

2 Advisory -
1 Message Low
0 Deactivated None

Diagnostic code
(DiagCode)

Diagnostic message (DiagMsg) Diagnostic class
(DiagClass)

8001 Diagnostic acknowledgement 1
8002 Controller boot started 1
8003 Controller boot finished 1
8004 Program started 1
8005 Program automatic start active 1
8006 Program stopped 1
8007 Controller login 1
8008 Controller logout 1
8009 Program reset 1
8010 write file 1
8013 Controller connect to TCP/IP server 1
8014 Controller disconnect from TCP/IP server 1
8015 filesystem <ide0:> repaired 1
8016 Controller reset 1
8017 CANopen emergency message reset 1
8018 CANopen node guarding error resolved 1
8019 CANopen node error info 1
8020 Program cycle check has changed 1
8021 Program cycle check values are changed 1
262 EIO0000001909 03/2018

Diagnostic Messages
8022 FC_SetTaskPriority() called 1
8023 Controller shutdown 1
8027 File write open 1
8028 File write close 1
8029 UPS OK 1
8030 UPS active -no power 1
8031 UPS power supply OK 1
8032 UPS begin saving retain area 1
8033 UPS retain area saved 1
8034 UPS program tasks terminated 1
8035 UPS active -system shutdown started 1
8036 UPS controller rebooting started 1
8037 Battery low 2
8038 NvRam/RTC power outage detected 2
8042 SERCOS phase switched 1
8043 SERCOS detect configuration 1
8044 SERCOS firmware download 1
8045 File write error detected 1
8046 FPGA firmware download 1
8047 PIC firmware download 1
8048 BT-4 firmware download 1
8051 Controller type 1
8052 SERCOS extended diagnostic (MASTER) 1
8053 UPS active overtemperature 1
8054 Controller temperature out of range 2
8055 Controller message HW monitor 1
8056 Controller power supply low 1
8057 Program online change 1
8059 UPS active -IEC-control task running 1
8060 UPS changing state 1
8100 Motor overload 3
8101 Power stage overtemperature 3
8102 Motor overtemperature 3
8104 Control voltage out of range 3

Diagnostic code
(DiagCode)

Diagnostic message (DiagMsg) Diagnostic class
(DiagClass)
EIO0000001909 03/2018 263

Diagnostic Messages
8105 Encoder signal out of range 3
8106 DC bus controller communication not possible 3
8107 Overcurrent 3
8108 DC bus overvoltage 3
8109 DC bus undervoltage 3
8110 Phase missing 3
8111 Shutdown due to tracking deviation 3
8112 SERCOS telegram invalid 3
8113 Braking resistor error detected 3
8114 Device type plate not readable 3
8116 Commutation error detected 3
8117 Motor type plate not readable 3
8119 Power stage short-circuit /ground error detection 3
8120 Power stage overload 3
8121 Braking resistor - overtemperature 3
8122 Shutdown due to velocity limit 3
8123 Safe Torque Off incorrect 3
8125 Motor load high 2
8126 Power stage temperature high 2
8127 Motor temperature high 2
8129 Power stage load high 2
8130 Temperature of braking resistor high 2
8132 Tracking deviation limit exceeded 2
8133 Speed-dependent current reduction 2
8134 External 24 Vdc low 2
8135 DC bus voltage low 2
8136 Safe Torque Off active 2
8137 Motorless 3
8138 Motor/Drive combination not supported 3
8139 DC bus precharge not possible 3
8140 Motor stop time limit exceeded 3
8142 Control board overtemperature 3
8143 Encoder temperature high 2
8144 DC bus short-circuit or ground error 3

Diagnostic code
(DiagCode)

Diagnostic message (DiagMsg) Diagnostic class
(DiagClass)
264 EIO0000001909 03/2018

Diagnostic Messages
8146 DC bus overload 3
8153 DC bus discharge not possible 3
8154 Phase L1 missing 2
8155 Phase L2 missing 2
8156 Phase L3 missing 2
8157 DC bus load high 2
8159 DC bus discharge delayed 2
8161 Control board temperature high 2
8163 SERCOS Slave C1D error detected 3
8164 SERCOS C1D man.-specific error detected 3
8165 SERCOS Slave C2D advisory detected 2
8166 SERCOS C2Dman.specific advisory detected 2
8169 SERCOS Slave communication disturbance detected 2
8170 Encoder position not accessible 3
8171 Encoder communication disturbance detected 2
8172 Encoder extended diagnostic error detected 1
8173 Encoder error (track monitoring) detected 1
8177 Power board overtemperature 3
8178 Device internal error detected 3
8179 Braking resistor load high 2
8180 Power board temperature high 2
8181 Fan error detected 2
8182 External 24 Vdc power supply high 1
8183 Device fallback firmware active 3
8184 HW/SW combination not supported 3
8185 Device error detected 3
8186 DC bus voltage high 2
8204 Program cannot be loaded 3
8205 Impermissible parameter value 3
8209 Last boot unsuccessful 3
8300 Program divide by zero 3
8301 coprocessor segment overflow 3
8302 stack error detected 3
8303 general protection error detected 3

Diagnostic code
(DiagCode)

Diagnostic message (DiagMsg) Diagnostic class
(DiagClass)
EIO0000001909 03/2018 265

Diagnostic Messages
8304 coprocessor error detected 3
8305 memory limit exceeded 3
8306 arithmetic overflow 3
8307 double execution error detected 3
8308 invalid task state segment 3
8309 no memory segment 3
8310 invalid memory segment adjustment 3
8311 coprocessor division error detected 3
8312 Parameter relocation unsuccessful 3
8313 excessive cycle time overrun 3
8316 NvRam data not valid 2
8317 Program cycle time overrun 2
8318 Program calculated profile deleted 3
8320 incorrect array access 3
8321 division by zero 3
8322 exception in IEC task 3
8323 string too long 3
8324 UPS error detected 3
8325 File corrupt 3
8326 Program function not supported 3
8327 CamTrack invalid Position Source 2
8328 CamTrack invalid Destination 2
8329 CamTrack invalid Bit number 2
8330 Program master job not executable 3
8331 Licensing 3
8332 Licensing 3
8333 EncoderNet receiving data not possible 3
8334 EncoderNet receiving data dist.detected 2
8335 EncoderNet synchronization not possible 3
8336 EncoderNet synchronization disturbance detected 2
8337 Parameter DynIECData value too high 3
8338 UPS battery not charged 3
8339 UPS active -system temperature high 3
8340 Data/parameter out of range 3

Diagnostic code
(DiagCode)

Diagnostic message (DiagMsg) Diagnostic class
(DiagClass)
266 EIO0000001909 03/2018

Diagnostic Messages
8341 CamTrack invalid Position type 2
8400 Program diagnostic message class 0 0
8401 Program diagnostic message class 1 1
8402 Program diagnostic message class 2 2
8403 Program diagnostic message class 3 3
8404 Program diagnostic message class 4 4
8406 IEC diagnostic message class 1 1
8501 SERCOS slave not found 3
8502 SERCOS loop not closed 1
8503 SERCOS service channel error detected 3
8504 SERCOS read cycle overflow 3
8505 SERCOS Master communication disturbance detected 2
8506 SERCOS Master communication not possible 3
8507 SERCOS write cycle overflow 3
8508 SERCOS run-up not possible 3
8509 SERCOS slave SW not supported 3
8510 SERCOS Interrupt lost 3
8511 CPU time overflow 3
8512 SERCOS incorrect device type 3
8517 SERCOS addressing not unique 3
8518 SERCOS too many real slaves 3
8600 Master Encoder communication not possible 3
8601 Master Encoder signal out of range 3
8610 Async FB error 3
8611 Copied Async FB. Use a reference 3
8612 Async FB declared as retain/persistent 3
8613 Async job timeout error 3
8700 CAN layer 2 driver error detected 3
8701 CAN layer2 initialization error detected 3
8702 CAN layer2 single error detected 3
8703 CAN layer2 errors reach advisory limit 3
8704 CAN layer2 switched passive 3
8705 CAN layer 2 system error detected 3
8706 CAN layer2 errors below advisory limit 1

Diagnostic code
(DiagCode)

Diagnostic message (DiagMsg) Diagnostic class
(DiagClass)
EIO0000001909 03/2018 267

Diagnostic Messages
8707 CAN layer2 switched active 1
8710 communication error detected 3
8720 no module found 3
8722 no cyclic telegram 3
8723 no PROFIBUS config data 3
8725 firmware of the module was replaced 1
8726 firmware of the module is incorrect 3
8730 incorrect master parameter data 3
8131 automatic bus deactivation 3
8732 slave not responding 3
8733 unrecoverable bus error detected 3
8734 Bus short circuit detected 3
8735 reject bus telegrams 3
8736 no I/O data exchange with slave 3
8737 double IEC address assigned 3
8738 Configuration I/O data > permissible I/O area 3
8739 double PROFIBUS address assigned 3
8750 CANopen node does not exist 3
8751 CANopen node not configured 1
8752 no CANopen EDS file exists 3
8753 initialisation CANopen module unsuccessful 3
8754 CANopen Emergency Message 3
8755 CANopen node guarding error detected 3
8756 CANopen DPM access timeout 3
8757 CANopen configuration error detected 3
8758 Application object Size not supported 3
8759 Application object maximum count limit reached 3
8780 Encoder output frequence > 1MHz 3
8781 Master Encoder no connection 3
8782 Master Encoder signal out of range 3
8785 Hardware component error detected 3
8786 Asynchronous to SERCOS bus 3
8787 configuration error detected 3
8788 Wiring error detected 2

Diagnostic code
(DiagCode)

Diagnostic message (DiagMsg) Diagnostic class
(DiagClass)
268 EIO0000001909 03/2018

Diagnostic Messages
8789 PacNet communication disturbance detected 2
8790 Module error detected 3
8791 TM5/TM7 module error detected on TM5NS31 3
8800 Insufficient working memory 3
8826 PIC update not possible 4
8827 Controller power-off/hardware monitor 3
8828 Library error detected 1
8903 Software error detected (class 3) 1
8904 Software error detected (class 4) 4
8905 FC_UserRefGeneratorStart not possible 4
8906 ControlMode invalid 3
8907 Encoder interface invalid 3
8908 Unintended motor reaction detected 3
8909 Motor type plate parameter invalid 3
8910 Reference value invalid 3
8910 Name too long 3
8957 SERCOS bus topology changed 2
8958 Encoder communication not possible 3
8959 Mains contactor error detected 3
8960 Invalid mains voltage mode setting 2
8961 Phase missing 2
8963 NRT IPAddr not in IPAddressRangeStatic 2
8964 NRT IPAddressRangeDynamic is insufficient 2
8965 NRT IP parameter read not possible 2
8966 NRT IP parameter write not possible 2
8967 NRT IP parameter device different 2
8968 NRT network overlapping detected 2
8969 Motor cable not connected 3
8970 Fast Device Replacement 1
8971 Fast Device Replacement not successful 2
8972 NRT gateway not in network 2
8973 Program download 1
8974 Brake voltage too low 3
8975 Motor commutation invalid 2

Diagnostic code
(DiagCode)

Diagnostic message (DiagMsg) Diagnostic class
(DiagClass)
EIO0000001909 03/2018 269

Diagnostic Messages
8976 Mains phases wiring not correct 3
8977 Motor temp. monitoring disabled 2
8978 InverterEnableConfig invalid 3
8979 STO_A and STO_B different levels 3
8980 Braking resistor not connected 3
8981 Bootloader update 1
8982 Device state 1
8983 DC bus precharge active 1
8984 DC bus precharge complete 1
8990 Firmware update not possible 1
8991 Data transfer invalid 1
8992 Braking resistor short circuit 3
8993 Last device on SERCOS port 1
8994 Invalid ProducerCycleTime 3
8995 Update motor type plate 1
8996 Update motor type plate not successful 3
8997 Motor identification invalid 3
8998 TM5/TM7 supply voltage low 3
8999 TM5/TM7 supply voltage advisory 1

Diagnostic code
(DiagCode)

Diagnostic message (DiagMsg) Diagnostic class
(DiagClass)
270 EIO0000001909 03/2018

Modicon LMC078
LMC078 Sercos3 Library
EIO0000001909 03/2018
LMC078 Sercos3 Library

Appendix C
LMC078 Sercos3 Library

Introduction
This chapter describes the LMC078 Sercos3 library.

What Is in This Chapter?
This chapter contains the following sections:

Section Topic Page
C.1 Data Types 272
C.2 Sercos Functions 278
C.3 Asynchronous Sercos Function Blocks 291
EIO0000001909 03/2018 271

LMC078 Sercos3 Library
Data Types

Section C.1
Data Types

Overview
This section describes the data types included in the LMC078 Sercos3 library.

What Is in This Section?
This section contains the following topics:

Topic Page
ST_SercosConfiguration Data Type 273
ST_SercosConfigurationDevice Data Type 274
ET_Sercos3CmdType Data Type 276
ET_Sercos3IDNType Data Type 277
272 EIO0000001909 03/2018

LMC078 Sercos3 Library
ST_SercosConfiguration Data Type

Introduction
The ST_SercosConfiguration structure stores the general values of the Sercos bus.
This data type is used with the following functions:
 FC_SercosGetConfiguration
 FC_SercosScanConfiguration

Data Type Structure
This table describes the content of the ST_SercosConfiguration structure:

Enumeration Type Description
uiNumberOfEntries UINT Number of Sercos devices scanned on the

Sercos bus.
uiNumberOfPhysicalDe-
vices

UINT Number of Sercos devices found on the
Sercos bus and are configured in the
SoMachine project.

uiPhaseRunUpCount UINT Counts the Sercos phase up runs.
iCurrentPhase INT Current phase which the Sercos bus is

running.
astDevices ARRAY [0...254] of

ST_SercosConfigurationDevice
Array with specific description of Sercos
devices found on the Sercos bus.
EIO0000001909 03/2018 273

LMC078 Sercos3 Library
ST_SercosConfigurationDevice Data Type

Introduction
The ST_SercosConfigurationDevice structure stores the specific description of a Sercos device
found on the Sercos bus.
This data type is used by the ST_SercosConfiguration data type.
This data type is used with the following functions:
 FC_SercosGetConfiguration
 FC_SercosScanConfiguration

Data Type Structure
This table describes the content of the ST_SercosConfigurationDevice structure:

Enumeration Type Description
stLogicalAddress ST_LogicalAd-

dress
Logical address of the Sercos slave.

uiVendorCode UINT Manufacturer code of the device.
sVendorDeviceId STRING(40) Sercos device identifier.
sName STRING(80) Name given to the device in the controller configuration.
sPowerSupply STRING(40) Currently assigned power supply.
udiWorkingMode UDINT Work mode of the device.
udiWorkingState UDINT Currently active mode.
udiIdentificationMode UDINT Identification mode of device.
uiTopologyAddress UINT Physical position of the device in the Sercos ring.
uiConfiguredTopolog-
yAddress

UINT Topological address found at the Sercos bus, which the
device is to be assigned to.

uiSercosAddress UINT Sercos address to which the device has been assigned.
The Sercos address is automatically assigned by the master
during start-up of the Sercos bus if the device is not in the
IdentificationMode SercosAddress

uiConfiguredSercosAd-
dress

UINT Configured Sercos address.

sSerialNumberControl-
ler

STRING(80) Serial number of a motor controller at the Sercos bus.

sConfiguredSerialNum-
berController

STRING(80) Serial number of a motor controller found at the Sercos bus,
which the drive is to be assigned to.

sSerialNumberMotor STRING(40) Serial number of the servo motor
sConfiguredSerialNum-
berMotor

STRING(40) Configured servo motor serial number.
274 EIO0000001909 03/2018

LMC078 Sercos3 Library
sApplicationType STRING(40) Application type.
sConfiguredApplica-
tionType

STRING(40) Configured application type.

sControllerType STRING(40) Device type.
sMotorType STRING(40) Name of the motor.
sFW_Version STRING(40) Firmware version of the device.

If the device in the controller configuration is virtual (non-
real), then the parameter value is <LMC
version>.virtual.

sHW_Version STRING(40) Hardware version of the device
If the device in the controller configuration is virtual (non-
real), then the parameter value is <LMC
version>.virtual.

sBootloaderVersion STRING(40) Version name of the device bootloader.
sFPGA_Version STRING(40) FPGA version of the device.
sIPAddress STRING(15) Defined IP address of the device.
sSubnetmask STRING(15) Defined subnet mask of the device.
sGateway STRING(15) Defined gateway of the device.
sMACAddress STRING(17) MAC address of the device.

Enumeration Type Description
EIO0000001909 03/2018 275

LMC078 Sercos3 Library
ET_Sercos3CmdType Data Type

Introduction
The ET_Sercos3CmdType data type is used with the following function blocks to set Sercos
commands:
 FB_SercosReadServiceDataAsync
 FB_SercosWriteServiceDataAsync

Read and write commands use the entries 0...6 while procedure commands use entries 7...10.

Data Type Structure
This table describes the content of the ET_Sercos3CmdType enumeration:

Enumeration Type Initial value Description
ReadWriteName WORD 0 Read or write a name.
ReadWriteAttribute WORD 1 Read or write an attribute.
ReadWriteUnit WORD 2 Read or write a unit.
ReadWriteMinValue WORD 3 Read or write a minimal value.
ReadWriteMaxValue WORD 4 Read or write a maximal value.
ReadWriteUserData WORD 5 Read or write user data.
ReadWriteVarLength WORD 6 Read or write a variable length.
ExecuteCommand WORD 7 Execute a command.
ExecuteCommandStart WORD 8 Start the execution of a command.
ExecuteCommandCheck WORD 9 Verify the state of executed command.
ExecuteCommandStop WORD 10 Stop the execution of a command.
276 EIO0000001909 03/2018

LMC078 Sercos3 Library
ET_Sercos3IDNType Data Type

Introduction
The ET_Sercos3IDNType data type is used with the following function blocks to set the Sercos IDN
type (standard or proprietary):
 FB_SercosProcedureCommandAsync
 FB_SercosReadServiceDataAsync
 FB_SercosWriteServiceDataAsync

Data Type Structure
This table describes the content of the ET_Sercos3IDNType enumeration:

Enumeration Type Initial value Description
ParameterType_P WORD 1 Proprietary IDN (P-x-xxxx.x.x).
ParameterType_S WORD 2 Standard IDN (S-x-xxxx.x.x).
EIO0000001909 03/2018 277

LMC078 Sercos3 Library
Sercos Functions

Section C.2
Sercos Functions

Overview
This section describes the Sercos functions.

What Is in This Section?
This section contains the following topics:

Topic Page
FC_SercosGetConfiguration Function 279
FC_SercosReadServiceData Function 280
FC_SercosReadServiceDataByTopAddr Function 283
FC_SercosScanConfiguration Function 285
FC_SercosWriteServiceData Function 287
FC_SercosWriteServiceDataByTopAddr Function 289
278 EIO0000001909 03/2018

LMC078 Sercos3 Library
FC_SercosGetConfiguration Function

Function Description
The FC_SercosGetConfiguration function is used to obtain a list of all devices, even not
configured, which are connected to the Sercos bus.
NOTE: The Sercos bus must have at least one time reached phase 2.
The function returns the Sercos devices which are determined at the end of the change to phase 2.
The scanned devices are returned in a structure. If the Sercos bus has never reached phase 2 then
the function returns an error.

Graphical Representation

IL and ST Representation
To see the general representation in IL or ST language, refer to Function and Function Block
Representation.

I/O Variable Description
This table describes the input variable:

This table describes the output variable:

This table describes the return value:

Input Type Comment
iq_stSercosConfiguration ST_SercosConfiguration Structure which gets configuration on Sercos

bus.

Output Type Comment
FC_SercosGetConfiguration DINT See the return value description table below.

Value Description
0 The function is successfully executed.
-1 Error detected.
-2 Sercos bus has never reached phase 2.
EIO0000001909 03/2018 279

LMC078 Sercos3 Library
FC_SercosReadServiceData Function

Function Description
The FC_SercosReadServiceData function reads service data via Sercos that are used for
debugging.

Graphical Representation

IL and ST Representation
To see the general representation in IL or ST language, refer to Function and Function Block
Representation.

WARNING
UNINTENDED EQUIPMENT OPERATION
Use this function only after consulting the Schneider Electric application department.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
280 EIO0000001909 03/2018

LMC078 Sercos3 Library
I/O Variable Description
This table describes the input variables:

This table describes the input/output variables:

This table describes the output variable:

Input Type Comment
i_stLogAddr ST_LogicalAddress Logical address of the Sercos device.
i_dwIDN DWORD Data service IDN.
i_wType WORD Data service type:

 0: Read name
 1: Read attribute
 2: Read unit
 3: Read minimum value
 4: Read maximum value
 5: Read user data
 6: Read user data with variable length
 7: Execute command

i_dwPointerToData DWORD Pointer on the data memory, filled with the actual
length of the data bytes.

i_wMaxDataLen WORD Actual length of the data bytes to read.

Input Type Comment
iq_uiReadDataLen UINT Variable for reading out the data length of the

Sercos parameter (uwType=6).
iq_uiMaxReadDataLen UINT Variable for reading out the maximum data length

of the Sercos parameter (uwType=6).

Output Type Comment
FC_SercosReadServiceData DINT See the return value description table below.
EIO0000001909 03/2018 281

LMC078 Sercos3 Library
This table describes the return value:

Value Description
0 The function is successfully executed.
-1 The logical address is invalid.
-431 Error detected during service request (for example, timeout).
-445 Service timeout.
-461 In the current phase, reading parameters via the service channel is not supported.
-462 The addressed device does not support the ServiceDataRead function.

-464 Invalid service transfer.
282 EIO0000001909 03/2018

LMC078 Sercos3 Library
FC_SercosReadServiceDataByTopAddr Function

Function Description
The FC_SercosReadServiceDataByTopAddr function reads service data via the Sercos
service channel from the addressed device.

Graphical Representation

IL and ST Representation
To see the general representation in IL or ST language, refer to Function and Function Block
Representation.

I/O Variable Description
This table describes the input variables:

WARNING
UNINTENDED EQUIPMENT OPERATION
Use this function only after consulting the Schneider Electric application department.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Input Type Comment
i_wTopoAddr WORD Topological address of the Sercos device.
i_dwIDN DWORD Data service IDN.
EIO0000001909 03/2018 283

LMC078 Sercos3 Library
This table describes the input/output variables:

This table describes the output variable:

This table describes the return value:

i_wType WORD Data service type:
 0: Read name
 1: Read attribute
 2: Read unit
 3: Read minimum value
 4: Read maximum value
 5: Read user data
 6: Read user data with variable length
 7: Execute command

i_dwPointerToData DWORD Pointer to the data memory, filled with the actual length
of the data bytes.

i_wMaxDataLen WORD Actual length of the data bytes to read.

Input Type Comment
iq_uiReadDataLen UINT Variable for reading out the data length of the Sercos

parameter (uwType=6).
iq_uiMaxReadDataLen UINT Variable for reading out the maximum data length of the

Sercos parameter (uwType=6).

Output Type Comment
FC_SercosReadServiceDataByTopAddr DINT See the return value description table below.

Value Description
0 The function is successfully executed.
-1 The topological address is invalid.
-431 Error detected during service request (for example, timeout).
-445 Service timeout.
-461 In the current phase, reading parameters via the service channel is not supported.
-462 The addressed device does not support the ServiceDataRead function.

-464 Invalid service transfer.

Input Type Comment
284 EIO0000001909 03/2018

LMC078 Sercos3 Library
FC_SercosScanConfiguration Function

Function Description
The FC_SercosScanConfiguration function is used to obtain a list of all devices, even if not
configured, which are connected to the Sercos bus.
The Sercos bus is scanned by this function automatically.
If the Sercos bus is in a phase below 2 then the function switches to phase 2.
In phase 2 the Sercos bus is scanned. When the Sercos bus is scanned it is put back to the initial
phase.
If the Sercos bus is in phase 2 or greater, the scanned devices are returned.
The scanned devices are returned in a structure.

Graphical Representation

IL and ST Representation
To see the general representation in IL or ST language, refer to Function and Function Block
Representation.

I/O Variable Description
This table describes the input/output variable:

This table describes the output variable:

Input Type Comment
iq_stSercosConfiguration ST_SercosConfiguration Structure which gets configuration on Sercos

bus.

Output Type Comment
FC_SercosScanConfiguration DINT See the return value description table below.
EIO0000001909 03/2018 285

LMC078 Sercos3 Library
This table describes the return value:

Value Description
0 The function is successfully executed.
-1 Error detected.
-2 The Sercos bus cannot reach phase 2.
286 EIO0000001909 03/2018

LMC078 Sercos3 Library
FC_SercosWriteServiceData Function

Function Description
The FC_SercosWriteServiceData function writes service data via Sercos that are used for
debugging.

Graphical Representation

IL and ST Representation
To see the general representation in IL or ST language, refer to Function and Function Block
Representation.

I/O Variable Description
This table describes the input variables:

WARNING
UNINTENDED EQUIPMENT OPERATION
Use this function only after consulting the Schneider Electric application department.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Input Type Comment
i_stLogAddr ST_LogicalAddress Logical address of the Sercos device.
i_dwIDN DWORD Data service IDN.
i_wType WORD Data service type:

 0: Write name
 1: Write attribute
 2: Write unit
 3: Write minimum value
 4: Write maximum value
 5: Write user data
 6: Write user data with variable length
 7: Execute command
EIO0000001909 03/2018 287

LMC078 Sercos3 Library
This table describes the output variable:

This table describes the return value:

i_dwPointerToData DWORD Pointer on the data memory, filled with the actual
length of the data bytes.

i_wMaxDataLen WORD Actual length of the data bytes to write.

Output Type Comment
FC_SercosWriteServiceData DINT See the return value description table below.

Value Description
0 The function is successfully executed.
-1 The logical address is invalid.
-431 Error detected during service request (for example, timeout).
-445 Service timeout.
-461 In the current phase, writing parameters via the service channel is not supported.
-462 The addressed device does not support the ServiceDataWrite function.

-464 Invalid service transfer.

Input Type Comment
288 EIO0000001909 03/2018

LMC078 Sercos3 Library
FC_SercosWriteServiceDataByTopAddr Function

Function Description
The FC_SercosWriteServiceDataByTopAddr function writes service data via the Sercos
service channel into the addressed device.

Graphical Representation

IL and ST Representation
To see the general representation in IL or ST language, refer to Function and Function Block
Representation.

I/O Variable Description
This table describes the input variables:

WARNING
UNINTENDED EQUIPMENT OPERATION
Use this function only after consulting the Schneider Electric application department.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Input Type Comment
i_wTopoAddr WORD Topological address of the Sercos device.
i_dwIDN DWORD Data service IDN.
i_wType WORD Data service type:

 0: Write name
 1: Write attribute
 2: Write unit
 3: Write minimum value
 4: Write maximum value
 5: Write user data
 6: Write user data with variable length
 7: Execute command
EIO0000001909 03/2018 289

LMC078 Sercos3 Library
This table describes the output variable:

This table describes the return value:

i_dwPointerToData DWORD Pointer to the data memory, filled with the actual length of the data
bytes.

i_wMaxDataLen WORD Actual length of the data bytes to write.

Output Type Comment
FC_SercosWriteServiceDataByTopAddr DINT See the return value description table below.

Value Description
0 The function is successfully executed.
-1 The topological address is invalid.
-431 Error detected during service request (for example, timeout).
-445 Service timeout.
-461 In the current phase, writing parameters via the service channel is not supported.
-462 The addressed device does not support the ServiceDataWrite function.

-464 Invalid service transfer.

Input Type Comment
290 EIO0000001909 03/2018

LMC078 Sercos3 Library
Asynchronous Sercos Function Blocks

Section C.3
Asynchronous Sercos Function Blocks

Overview
This section describes the asynchronous Sercos function blocks.
These function blocks are used for acyclic communication on Sercos service channel.
They are used for asynchronously reading/writing device parameters and sending commands via
the Sercos interface.
All IDN of the LXM32S drive are accessible through these function blocks.

What Is in This Section?
This section contains the following topics:

Topic Page
FB_SercosReadServiceDataAsync : Read Data Asynchronously via theSercos Interface 292
FB_SercosWriteServiceDataAsync: Write Data Asynchronously via theSercos Interface 294
FB_SercosProcedureCommandAsync: Send Commands Asynchronously via the Sercos
interface

296
EIO0000001909 03/2018 291

LMC078 Sercos3 Library
FB_SercosReadServiceDataAsync : Read Data Asynchronously via theSercos
Interface

Function Block Description
The FB_SercosReadServiceDataAsync function block reads data asynchronously via the
Sercos interface.

Graphical Representation

IL and ST Representation
To see the general representation in IL or ST language, refer to Function and Function Block
Representation.

I/O Variable Description
This table describes the input variables:

Input Type Comment
i_xExecute BOOL If TRUE, starts the function block execution.
i_ifSlave SystemConfiguration.IF

_IdentificationMandatory
Interface that describes the device. It contains the name
of the device and its logical number.

i_uwIDN WORD IDN number of the device.
Example for IDN S-0-1027.0.1:
 i_uwIDN = 1027

i_etIDNType ET_Sercos3IDNType
(see page 277)

IDN type (standard or proprietary).
Example for IDN S-0-1027.0.1:
 i_etIDNType =
ET_Sercos3IDNType.ParameterType_S;

i_uwIDN_SI WORD IDN structure instance.
Example for IDN S-0-1027.0.1:
 i_uwIDN_SI = 0

i_uwIDN_SE WORD IDN structure element.
Example for IDN S-0-1027.0.1:
 i_uwIDN_SE = 1
292 EIO0000001909 03/2018

LMC078 Sercos3 Library
This table describes the output variables:

i_etCmdType ET_Sercos3CmdType
(see page 276)

Type of command to execute.
The command supports command types 0...6.

i_pBuffer POINTER TO BYTE Pointer to a buffer of length i_szSize.
i_wSize WORD Length of the buffer.

Output Type Comment
q_xDone BOOL If TRUE, indicates that the function block execution is finished

with no error detected.
q_xBusy BOOL If TRUE, indicates that the function block execution is in

progress.
q_diSercosError
(see page 217)

DINT Sercos error (see page 217) value that is returned by the
synchronous read command.

q_xSercosError BOOL If TRUE, indicates that a Sercos error has been detected
(negative value).

q_uiReadDataLen WORD Number of data items read.

Input Type Comment
EIO0000001909 03/2018 293

LMC078 Sercos3 Library
FB_SercosWriteServiceDataAsync: Write Data Asynchronously via theSercos
Interface

Function Block Description
The FB_SercosWriteServiceDataAsync function block writes data asynchronously via the
Sercos interface.

Graphical Representation

IL and ST Representation
To see the general representation in IL or ST language, refer to Function and Function Block
Representation.

I/O Variable Description
This table describes the input variables:

Input Type Comment
i_xExecute BOOL If TRUE, starts the function block execution.
i_ifSlave SystemConfiguration.IF

_IdentificationMandatory
Interface that describes the device. It contains the name
of the device and its logical number.

i_uwIDN WORD IDN number of the device.
Example for IDN S-0-1027.0.1:
 i_uwIDN = 1027

i_etIDNType ET_Sercos3IDNType
(see page 277)

IDN type (standard or proprietary).
Example for IDN S-0-1027.0.1:
 i_etIDNType =
ET_Sercos3IDNType.ParameterType_S;

i_uwIDN_SI WORD IDN structure instance.
Example for IDN S-0-1027.0.1:
 i_uwIDN_SI = 0

i_uwIDN_SE WORD IDN structure element.
Example for IDN S-0-1027.0.1:
 i_uwIDN_SE = 1
294 EIO0000001909 03/2018

LMC078 Sercos3 Library
This table describes the output variables:

i_etCmdType ET_Sercos3CmdType
(see page 276)

Type of command to execute.
The command supports command types 0...6.

i_pBuffer POINTER TO BYTE Pointer to a buffer of length i_szSize.
i_wSize WORD Length of the buffer.

Output Type Comment
q_xDone BOOL If TRUE, indicates that the function block execution is finished

with no error.
q_xBusy BOOL If TRUE, indicates that the function block execution is in

progress.
q_diSercosError
(see page 217)

DINT Sercos error (see page 217) value that is returned by the
synchronous read command.

q_xSercosError BOOL If TRUE, indicates that a Sercos error has been detected
(negative value).

Input Type Comment
EIO0000001909 03/2018 295

LMC078 Sercos3 Library
FB_SercosProcedureCommandAsync: Send Commands Asynchronously via the
Sercos interface

Function Block Description
The FB_SercosProcedureCommandAsync function block sends commands asynchronously via
the Sercos interface.

Graphical Representation

IL and ST Representation
To see the general representation in IL or ST language, refer to Function and Function Block
Representation.

I/O Variable Description
This table describes the input variables:

Input Type Comment
i_xExecute BOOL If TRUE, starts the function block execution.
i_xAbort BOOL If TRUE, execution of the command is aborted.

If FALSE, execution of the command as planned.
i_ifSlave SystemConfiguration.IF

_IdentificationMandatory
Interface that describes the device. It contains the name
of the device and its logical number.

i_uwIDN WORD IDN number of the device.
Example for IDN S-0-1027.0.1:
 i_uwIDN = 1027

i_etIDNType ET_Sercos3IDNType
(see page 277)

IDN type (standard or proprietary).
Example for IDN S-0-1027.0.1:
 i_etIDNType =
ET_Sercos3IDNType.ParameterType_S;
296 EIO0000001909 03/2018

LMC078 Sercos3 Library
This table describes the output variables:

i_uwIDN_SI WORD IDN structure instance.
Example for IDN S-0-1027.0.1:
 i_uwIDN_SI = 0

i_uwIDN_SE WORD IDN structure element.
Example for IDN S-0-1027.0.1:
 i_uwIDN_SE = 1

Output Type Comment
q_xDone BOOL If TRUE, indicates that the function block execution is finished

with no error.
q_xBusy BOOL If TRUE, indicates that the function block execution is in

progress.
q_diSercosError
(see page 217)

DINT Sercos error (see page 217) value that is returned by the
synchronous read command.

q_xSercosError BOOL If TRUE, indicates that a Sercos error has been detected
(negative value).

q_uiProcCmdError UINT Procedure command error value that is returned by the
synchronous read command.

q_xProcCmdError BOOL If TRUE, indicates that a procedure command error has been
detected.

Input Type Comment
EIO0000001909 03/2018 297

LMC078 Sercos3 Library

298 EIO0000001909 03/2018

Modicon LMC078
Functions to Get/Set Serial Line Configuration in User Program
EIO0000001909 03/2018
Functions to Get/Set Serial Line Configuration in User Program

Appendix D
Functions to Get/Set Serial Line Configuration in User Program

Overview
This section describes the functions to get/set the serial line configuration in your program.
To use these functions, add the M2xx Communication library.
For further information on adding a library, refer to the SoMachine Programming Guide.

What Is in This Chapter?
This chapter contains the following topics:

Topic Page
GetSerialConf: Get the Serial Line Configuration 300
SetSerialConf: Change the Serial Line Configuration 301
SERIAL_CONF: Structure of the Serial Line Configuration Data Type 303
EIO0000001909 03/2018 299

Functions to Get/Set Serial Line Configuration in User Program
GetSerialConf: Get the Serial Line Configuration

Function Description
GetSerialConf returns the configuration parameters for a specific serial line communication
port.

Graphical Representation

Parameter Description

Example
Refer to the SetSerialConf (see page 302) example.

Input Type Comment
Link LinkNumber

(see SoMachine,
Modbus and ASCII
Read/Write
Functions,
PLCCommunication
Library Guide)

Link is the communication port number.

PointerToSerialConf POINTER TO
SERIAL_CONF
(see page 303)

PointerToSerialConf is the address of the configuration
structure (variable of SERIAL_CONF type) in which the
configuration parameters are stored. The ADR standard function
must be used to define the associated pointer. (See the example
below.)

Output Type Comment
GetSerialConf WORD This function returns:

 0: The configuration parameters are returned
 255: The configuration parameters are not returned because:
 the function was not successful
 the function is in progress
300 EIO0000001909 03/2018

Functions to Get/Set Serial Line Configuration in User Program
SetSerialConf: Change the Serial Line Configuration

Function Description
SetSerialConf is used to change the serial line configuration.

Graphical Representation

NOTE: Changing the configuration of the Serial Line(s) port(s) during programming execution can
interrupt ongoing communications with other connected devices.

Parameter Description

WARNING
LOSS OF CONTROL DUE TO UNEXPECTED CONFIGURATION CHANGE
Validate and test all the parameters of the SetSerialConf function before putting your program
into service.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Input Type Comment
Link LinkNumber

(see SoMachine,
Modbus and ASCII
Read/Write
Functions,
PLCCommunication
Library Guide)

LinkNumber is the communication port number.

PointerToSerialConf POINTER TO
SERIAL_CONF
(see page 303)

PointerToSerialConf is the address of the configuration
structure (variable of SERIAL_CONF type) in which the new
configuration parameters are stored. The ADR standard
function must be used to define the associated pointer. (See
the example below.) If 0, set the application default
configuration to the serial line.
EIO0000001909 03/2018 301

Functions to Get/Set Serial Line Configuration in User Program
Example
VAR

 MySerialConf: SERIAL_CONF

 result: WORD;

END_VAR

(*Get current configuration of serial line 1*)

GetSerialConf(1, ADR(MySerialConf));

(*Change to modbus RTU slave address 9*)

MySerialConf.Protocol := 0; (*Modbus RTU/Somachine protocol (in
this case CodesysCompliant selects the protocol)*)

MySerialConf.CodesysCompliant := 0; (*Modbus RTU*)

MySerialConf.address := 9; (*Set modbus address to 9*)

(*Reconfigure the serial line 1*)

result := SetSerialConf(1, ADR(MySerialConf));

Output Type Comment
SetSerialConf WORD This function returns:

 0: The new configuration is set
 255: The new configuration is refused because:
 the function is in progress
 the input parameters are not valid
302 EIO0000001909 03/2018

Functions to Get/Set Serial Line Configuration in User Program
SERIAL_CONF: Structure of the Serial Line Configuration Data Type

 Structure Description
The SERIAL_CONF structure contains configuration information about the serial line port. It
contains these variables:

Variable Type Description
Bauds DWORD baud rate
InterframeDelay WORD minimum time (in ms) between 2 frames in Modbus (RTU, ASCII)
FrameReceivedTimeout WORD In the ASCII protocol, FrameReceivedTimeout allows the system to

conclude the end of a frame at reception after a silence of the specified
number of ms. If 0 this parameter is not used.

FrameLengthReceived WORD In the ASCII protocol, FrameLengthReceived allows the system to
conclude the end of a frame at reception, when the controller received
the specified number of characters. If 0, this parameter is not used.

Protocol BYTE 0: Modbus RTU or SoMachine (see CodesysCompliant)

1: Modbus ASCII
2: ASCII

Address BYTE Modbus address 0 to 255 (0 for Master)
Parity BYTE 0: none

1: odd
2: even

Rs485 BYTE 0: RS232
1: RS485

ModPol (polarizartion
resistor)

BYTE 0: no
1: yes

DataFormat BYTE 7 bits or 8 bits
StopBit BYTE 1: 1 stop bit

2: 2 stop bits
CharFrameStart BYTE In the ASCII protocol, 0 means there is no start character in the frame.

Otherwise, the corresponding ASCII character is used to detect the
beginning of a frame in receiving mode. In sending mode, this character
is added at the beginning of the user frame.

CharFrameEnd1 BYTE In the ASCII protocol, 0 means there is no second end character in the
frame. Otherwise, the corresponding ASCII character is used to detect
the end of a frame in receiving mode. In sending mode, this character
is added at the end of the user frame.
EIO0000001909 03/2018 303

Functions to Get/Set Serial Line Configuration in User Program
CharFrameEnd2 BYTE In the ASCII protocol, 0 means there is no second end character in the
frame. Otherwise, the corresponding ASCII character is used (along
with CharFrameEnd1) to detect the end of a frame in receiving mode.
In sending mode, this character is added at the end of the user frame.

CodesysCompliant BYTE 0: Modbus RTU
1: SoMachine (when Protocol = 0)

CodesysNetType BYTE not used

Variable Type Description
304 EIO0000001909 03/2018

Modicon LMC078
LMC078 - Controller Performance
EIO0000001909 03/2018
Controller Performance

Appendix E
Controller Performance

Processing Performance

Introduction
This chapter provides information about the LMC078 processing performance.

Logic Processing
This table presents logic processing performance for various logical instructions:

Communication and System Processing Time
The communication processing time varies, depending on the number of sent/received requests.

Response Time on Event
The response time presented in the following table represents the time between a signal rising
edge on an input triggering an external task and the edge of an output set by this task. The event
task also process 100 IL instructions before setting the output:

IL Instruction Type Duration for 1000 Instructions
Addition/subtraction/multiplication of INT 1 μs
Addition/subtraction/multiplication of DINT 1 μs
Addition/subtraction/multiplication of REAL 3 μs
Division of REAL 48 μs
Operation on BOOLEAN, for example, Status:= Status
and value

2 μs

LD INT + ST INT 1 μs
LD DINT + ST DINT 1 μs
LD REAL + ST REAL 9 μs

Minimum Typical Maximum
120 μs 126 μs 140 μs
EIO0000001909 03/2018 305

LMC078 - Controller Performance
306 EIO0000001909 03/2018

Modicon LMC078
Glossary
EIO0000001909 03/2018
Glossary
!
%IW

According to the IEC standard, %IW represents an input word register (for example, a language
object of type analog IN).

%QW
According to the IEC standard, %QW represents an output word register (for example, a language
object of type analog OUT).

A
application

A program including configuration data, symbols, and documentation.

ARP
(address resolution protocol) An IP network layer protocol for Ethernet that maps an IP address to
a MAC (hardware) address.

AT
(acknowledge telegram) On Sercos bus, data are sent by the slaves to the master through AT
telegrams (feedback values).

B
BOOL

(boolean) A basic data type in computing. A BOOL variable can have one of these values: 0
(FALSE), 1 (TRUE). A bit that is extracted from a word is of type BOOL; for example, %MW10.4 is a
fifth bit of memory word number 10.

Boot application
(boot application) The binary file that contains the application. Usually, it is stored in the controller
and allows the controller to boot on the application that the user has generated.

BOOTP
(bootstrap protocol) A UDP network protocol that can be used by a network client to automatically
obtain an IP address (and possibly other data) from a server. The client identifies itself to the server
using the client MAC address. The server, which maintains a pre-configured table of client device
MAC addresses and associated IP addresses, sends the client its pre-configured IP address.
BOOTP was originally used as a method that enabled diskless hosts to be remotely booted over a
network. The BOOTP process assigns an infinite lease of an IP address. The BOOTP service
utilizes UDP ports 67 and 68.
EIO0000001909 03/2018 307

Glossary
C
CANopen

An open industry-standard communication protocol and device profile specification (EN 50325-4).

CFC
(continuous function chart) A graphical programming language (an extension of the IEC 61131-3
standard) based on the function block diagram language that works like a flowchart. However, no
networks are used and free positioning of graphic elements is possible, which allows feedback
loops. For each block, the inputs are on the left and the outputs on the right. You can link the block
outputs to the inputs of other blocks to create complex expressions.

CIP
(common industrial protocol) When a CIP is implemented in a network application layer, it can
communicate seamlessly with other CIP-based networks without regard to the protocol. For
example, the implementation of CIP in the application layer of an Ethernet TCP/IP network creates
an EtherNet/IP environment. Similarly, CIP in the application layer of a CAN network creates a
DeviceNet environment. In that case, devices on the EtherNet/IP network can communicate with
devices on the DeviceNet network through CIP bridges or routers.

configuration
The arrangement and interconnection of hardware components within a system and the hardware
and software parameters that determine the operating characteristics of the system.

continuous function chart language
A graphical programming language (an extension of the IEC61131-3 standard) based on the
function block diagram language that works like a flowchart. However, no networks are used and
free positioning of graphic elements is possible, which allows feedback loops. For each block, the
inputs are on the left and the outputs on the right. You can link the block outputs to inputs of other
blocks to create complex expressions.

controller
Automates industrial processes (also known as programmable logic controller or programmable
controller).

CRC
(cyclical redundancy check) A method used to determine the validity of a communication
transmission. The transmission contains a bit field that constitutes a checksum. The message is
used to calculate the checksum by the transmitter according to the content of the message.
Receiving nodes, then recalculate the field in the same manner. Any discrepancy in the value of
the 2 CRC calculations indicates that the transmitted message and the received message are
different.
308 EIO0000001909 03/2018

Glossary
D
DHCP

(dynamic host configuration protocol) An advanced extension of BOOTP. DHCP is more
advanced, but both DHCP and BOOTP are common. (DHCP can handle BOOTP client requests.)

DINT
(double integer type) Encoded in 32-bit format.

DWORD
(double word) Encoded in 32-bit format.

E
EDS

(electronic data sheet) A file for fieldbus device description that contains, for example, the
properties of a device such as parameters and settings.

Ethernet
A physical and data link layer technology for LANs, also known as IEEE 802.3.

EtherNet/IP
(Ethernet industrial protocol) An open communications protocol for manufacturing automation
solutions in industrial systems. EtherNet/IP is in a family of networks that implement the common
industrial protocol at its upper layers. The supporting organization (ODVA) specifies EtherNet/IP
to accomplish global adaptability and media independence.

F
FB

(function block) A convenient programming mechanism that consolidates a group of programming
instructions to perform a specific and normalized action, such as speed control, interval control, or
counting. A function block may comprise configuration data, a set of internal or external operating
parameters and usually 1 or more data inputs and outputs.

FE
(functional Earth) A common grounding connection to enhance or otherwise allow normal
operation of electrically sensitive equipment (also referred to as functional ground in North
America).
In contrast to a protective Earth (protective ground), a functional earth connection serves a purpose
other than shock protection, and may normally carry current. Examples of devices that use
functional earth connections include surge suppressors and electromagnetic interference filters,
certain antennas, and measurement instruments.
EIO0000001909 03/2018 309

Glossary
firmware
Represents the BIOS, data parameters, and programming instructions that constitute the operating
system on a controller. The firmware is stored in non-volatile memory within the controller.

FTP
(file transfer protocol) A standard network protocol built on a client-server architecture to exchange
and manipulate files over TCP/IP based networks regardless of their size.

function block
A programming unit that has 1 or more inputs and returns 1 or more outputs. FBs are called through
an instance (function block copy with dedicated name and variables) and each instance has a
persistent state (outputs and internal variables) from 1 call to the other.
Examples: timers, counters

H
health bit

Variable that indicates the communication state of the channels.

I
I/O

(input/output)

ICMP
(Internet control message protocol) Reports errors detected and provides information related to
datagram processing.

IEC
(international electrotechnical commission) A non-profit and non-governmental international
standards organization that prepares and publishes international standards for electrical,
electronic, and related technologies.

IEC 61131-3
Part 3 of a 3-part IEC standard for industrial automation equipment. IEC 61131-3 is concerned with
controller programming languages and defines 2 graphical and 2 textual programming language
standards. The graphical programming languages are ladder diagram and function block diagram.
The textual programming languages include structured text and instruction list.

IL
(instruction list) A program written in the language that is composed of a series of text-based
instructions executed sequentially by the controller. Each instruction includes a line number, an
instruction code, and an operand (refer to IEC 61131-3).
310 EIO0000001909 03/2018

Glossary
Input Assembly
Assemblies are blocks of data exchanged between network devices and the logic controller. An
Input Assembly generally contains status information from a slave or Target device, read by the
master or Originator.

INT
(integer) A whole number encoded in 16 bits.

IP
(Internet protocol Part of the TCP/IP protocol family that tracks the Internet addresses of devices,
routes outgoing messages, and recognizes incoming messages.

L
LD

(ladder diagram) A graphical representation of the instructions of a controller program with symbols
for contacts, coils, and blocks in a series of rungs executed sequentially by a controller (refer to
IEC 61131-3).

LED
(light emitting diode) An indicator that illuminates under a low-level electrical charge.

LINT
(long integer) A whole number encoded in a 64-bit format (4 times INT or 2 times DINT).

LRC
(longitudinal redundancy checking) An error-detection method for determining the correctness of
transmitted and stored data.

LWORD
(long word) A data type encoded in a 64-bit format.

M
MAC address

(media access control address) A unique 48-bit number associated with a specific piece of
hardware. The MAC address is programmed into each network card or device when it is
manufactured.

MAST
A processor task that is run through its programming software. The MAST task has 2 sections:
 IN: Inputs are copied to the IN section before execution of the MAST task.
 OUT: Outputs are copied to the OUT section after execution of the MAST task.

MDT
(master data telegram) On Sercos bus, an MDT telegram is sent by the master once during each
transmission cycle to transmit data (command values) to the servo drives (slaves).
EIO0000001909 03/2018 311

Glossary
ms
(millisecond)

MST
(master synchronization telegram) On Sercos bus, an MST telegram is broadcast by the master at
the beginning of each transmission cycle to synchronize the timing of the cycle.

N
network

A system of interconnected devices that share a common data path and protocol for
communications.

node
An addressable device on a communication network.

O
originator

In EtherNet/IP explicit messaging, the device, usually the logic controller, that initiates data
exchanges with target network devices.
See also target

OS
(operating system) A collection of software that manages computer hardware resources and
provides common services for computer programs.

Output Assembly
Assemblies are blocks of data exchanged between network devices and the logic controller. An
Output Assembly generally contains command sent by the master or Originator, to the slave or
Target devices.

P
PDO

(process data object) An unconfirmed broadcast message or sent from a producer device to a
consumer device in a CAN-based network. The transmit PDO from the producer device has a
specific identifier that corresponds to the receive PDO of the consumer devices.

PE
(Protective Earth) A common grounding connection to help avoid the hazard of electric shock by
keeping any exposed conductive surface of a device at earth potential. To avoid possible voltage
drop, no current is allowed to flow in this conductor (also referred to as protective ground in North
America or as an equipment grounding conductor in the US national electrical code).
312 EIO0000001909 03/2018

Glossary
persistent data
Value of persistent data is used at next application change or cold start. Only get re-initialized at a
reboot of the controller or reset origin. Especially, they maintain their values after a download.

POU
(program organization unit) A variable declaration in source code and a corresponding instruction
set. POUs facilitate the modular re-use of software programs, functions, and function blocks. Once
declared, POUs are available to one another.

Profibus DP
(Profibus decentralized peripheral) An open bus system uses an electrical network based on a
shielded 2-wire line or an optical network based on a fiber-optic cable. DP transmission allows for
high-speed, cyclic exchange of data between the controller CPU and the distributed I/O devices.

program
The component of an application that consists of compiled source code capable of being installed
in the memory of a logic controller.

protocol
A convention or standard definition that controls or enables the connection, communication, and
data transfer between 2 computing system and devices.

R
REAL

A data type that is defined as a floating-point number encoded in a 32-bit format.

retained data
A value used in the next power-on or warm start. The value is retained because of a power outage
shutdown of the controller or a normal requested shutdown of the controller.

RPDO
(receive process data object An unconfirmed broadcast message or sent from a producer device
to a consumer device in a CAN-based network. The transmit PDO from the producer device has a
specific identifier that corresponds to the receive PDO of the consumer devices.

RPI
(requested packet interval) The time period between cyclic data exchanges requested by the
scanner. EtherNet/IP devices publish data at the rate specified by the RPI assigned to them by the
scanner, and they receive message requests from the scanner with a period equal to RPI.

RTC
(real-time clock) A battery-backed time-of-day and calender clock that operates continuously, even
when the controller is not powered for the life of the battery.

RTP
(real-time process) The real-time process is the most important system task. It is responsible for
executing all real-time tasks at the correct time. Real-time processing is triggered by the Sercos
real-time bus cycle.
EIO0000001909 03/2018 313

Glossary
S
SDO

(service data object) A message used by the field bus master to access (read/write) the object
directories of network nodes in CAN-based networks. SDO types include service SDOs (SSDOs)
and client SDOs (CSDOs).

Sercos
(serial real-time communications system) A digital control bus that interconnects, motion controls,
drives, I/Os, sensors, and actuators for numerically controlled machines and systems. It is a
standardized and open controller-to-intelligent digital device interface, designed for high-speed
serial communication of standardized closed-loop real-time data.

SFC
(sequential function chart) A language that is composed of steps with associated actions,
transitions with associated logic condition, and directed links between steps and transitions. (The
SFC standard is defined in IEC 848. It is IEC 61131-3 compliant.)

SINT
(signed integer) A 15-bit value plus sign.

ST
(structured text) A language that includes complex statements and nested instructions (such as
iteration loops, conditional executions, or functions). ST is compliant with IEC 61131-3.

string
A variable that is a series of ASCII characters.

system variable
A variable that provides controller data and diagnostic information and allows sending commands
to the controller.

T
target

In EtherNet/IP explicit messaging, the device, that responds to data exchange requests sent by
originator devices.
See also originator

task
A group of sections and subroutines, executed cyclically or periodically for the MAST task or
periodically for the FAST task.
A task possesses a level of priority and is linked to inputs and outputs of the controller. These I/O
are refreshed in relation to the task.
A controller can have several tasks.
314 EIO0000001909 03/2018

Glossary
TCP
(transmission control protocol) A connection-based transport layer protocol that provides a
simultaneous bi-directional transmission of data. TCP is part of the TCP/IP protocol suite.

touchprobe input
Touchprobe inputs are advanced digital inputs. These inputs are used for measuring functions,
which accurately detect positions relative to a measure input. Once a touchprobe function has
been activated, it runs independently in the system, independent of the IEC program. The IEC
program can use parameters to detect the state of the measuring function. This function is
supported by hardware and software.

TPDO
(transmit process data object) An unconfirmed broadcast message or sent from a producer device
to a consumer device in a CAN-based network. The transmit PDO from the producer device has a
specific identifier that corresponds to the receive PDO of the consumer devices.

U
UDINT

(unsigned double integer) Encoded in 32 bits.

UDP
(user datagram protocol) A connectionless mode protocol (defined by IETF RFC 768) in which
messages are delivered in a datagram (data telegram) to a destination computer on an IP network.
The UDP protocol is typically bundled with the Internet protocol. UDP/IP messages do not expect
a response, and are therefore ideal for applications in which dropped packets do not require
retransmission (such as streaming video and networks that demand real-time performance).

UINT
(unsigned integer) Encoded in 16 bits.

V
variable

A memory unit that is addressed and modified by a program.

W
WORD

A type encoded in a 16-bit format.
EIO0000001909 03/2018 315

Glossary
Z
zero track

The track of an incremental encoder which serves as the reference point and enables reinitial-
ization at each revolution, also known as top 0 or top Z.
316 EIO0000001909 03/2018

Modicon LMC078
Index
EIO0000001909 03/2018
Index
A
ASCII Manager, 224

C
CANopen interface, 194
changeIPAddress, 251

changing the controller IP address, 251
configuration parameters, 76
Controller Configuration

Controller Selection, 86
PLC Settings, 88

D
data type

ET_Sercos3CmdType, 276
ET_Sercos3IDNType, 277
ST_SercosConfiguration, 273
ST_SercosConfigurationDevice, 274

Download application, 67

E
embedded I/O configuration, 92
encoder configuration, 100
ET_Sercos3CmdType

data type, 276
ET_Sercos3IDNType

data type, 277
Ethernet

changeIPAddress function block, 251
EtherNet/IP adapter, 120
FTP Server, 176
Modbus TCP Client/Server, 174
Modbus TCP slave device, 179
Services, 167

EtherNet/IP
acyclic data exchange, 125

External Event, 40
EIO0000001909 03/2018
F
FB_SercosProcedureCommandAsync

sending Sercos commands asynchro-
nously, 296

FB_SercosReadServiceDataAsync
reading Sercos data asynchronously, 292

FB_SercosWriteServiceDataAsync
writing Sercos data asynchronously, 294

FC_SercosGetConfiguration
function, 279

FC_SercosReadServiceData
function, 280

FC_SercosReadServiceDataByTopAddr
function, 283

FC_SercosScanConfiguration
function, 285

FC_SercosWriteServiceData
function, 287

FC_SercosWriteServiceDataByTopAddr
function, 289

firewall
configuration, 187
default script file, 187
script commands, 188

firmware update, 245
FTP client, 178
FTP Server

Ethernet, 176
FTPRemoteFileHandling library, 178
function

FC_SercosGetConfiguration, 279
FC_SercosReadServiceData, 280
FC_SercosReadServiceDataByTopAddr,
283
FC_SercosScanConfiguration, 285
FC_SercosWriteServiceData, 287
FC_SercosWriteServiceDataByTopAddr,
289
317

Index
G
GetSerialConf

getting the serial line configuration, 300

H
Hardware Initialization Values, 62

I
IP address

changeIPAddress, 251

L
libraries, 23
Libraries

FTPRemoteFileHandling, 178
LMC078 Sercos3

FB_SercosProcedureCommandAsync,
296
FB_SercosReadServiceDataAsync, 292
FB_SercosWriteServiceDataAsync, 294

LXM32S configuration, 213

M
M2•• communication

GetSerialConf, 300
SetSerialConf, 301

Memory Mapping, 29
Modbus

Protocols, 174
Modbus Ioscanner, 227
Modbus Manager, 236
Modbus TCP Client/Server

Ethernet, 174
motion

performance, 44
programming requirements, 43

Motion task, 42
318
O
Output Behavior, 62, 62, 62
Output Forcing, 62
overview of the Sercos standard , 200

P
parameter types, 27
PROFIBUS DP

acyclic data exchange, 116
Protocols, 167

IP, 169
Modbus, 174

R
Reboot, 66
Remanent variables, 70
Reset cold, 65
Reset origin, 66
Reset warm, 65
Run command, 64

S
script commands

firewall, 188
script file

syntax rules, 192
Sercos

adding devices, 208
adding third-party devices, 208
FB_SercosProcedureCommandAsync,
296
FB_SercosReadServiceDataAsync, 292
FB_SercosWriteServiceDataAsync, 294
interface configuration, 203

Sercos scan, 209
serial line

ASCII Manager, 224
GetSerialConf, 300
Modbus Manager, 236
SetSerialConf, 301

SERIAL_CONF, 303
EIO0000001909 03/2018

Index
SetSerialConf, 301
setting the serial line configuration, 301

Software Initialization Values, 62
ST_SercosConfiguration

data type, 273
ST_SercosConfigurationDevice

data type, 274
state diagram, 52
Stop command, 64

T
Task

Cyclic task, 39
Event task, 40
External Event Task, 40
Status task, 41
Types, 39
Watchdogs, 45

third-party Sercos devices, adding, 208
EIO0000001909 03/2018
 319

Index

320 EIO0000001909 03/2018

	Modicon LMC078
	Table of Contents
	Safety Information
	About the Book
	About the Modicon LMC078 Motion Controller
	About the Modicon LMC078 Motion Controller
	Distributed I/O Architecture

	How to Configure the Controller
	How to Configure the Controller

	Libraries
	Libraries

	Supported Standard Data Types
	Supported Standard Data Types
	Parameter Types

	Memory Mapping
	Controller Memory Organization
	RAM Memory Organization
	Flash Memory Organization
	USB Memory Key

	Tasks
	Maximum Number of Tasks
	Task Configuration Screen
	Task Types
	Motion Task
	System and Task Watchdogs
	Task Priorities
	Default Task Configuration

	Controller States and Behaviors
	Controller State Diagram
	Controller State Diagram

	Controller States Description
	Controller States Description

	State Transitions and System Events
	Controller States and Output Behavior
	Commanding State Transitions
	Error Detection, Types, and Management
	Remanent Variables

	Controller Device Editor
	Controller Parameters
	Configuration Parameters
	Controller Selection
	PLC Settings

	Embedded Inputs and Outputs Configuration
	Embedded I/O Configuration
	Master Encoder Input Configuration

	Communication Modules
	PROFIBUS DP Slave Module Configuration
	Add a PROFIBUS DP Slave Module
	PROFIBUS DP Slave Module Configuration
	Acyclic Data Exchange

	EtherNet/IP Adapter Configuration
	EtherNet/IP Adapter Configuration
	Cyclic Data Exchange
	Acyclic Data Exchange

	Ethernet/IP Scanner Configuration
	Presentation
	Supported Devices
	EtherNet/IP Scanner Configuration
	EtherNet/IP Scanner I/O Mapping
	EtherNet/IP Scanner Status and Diagnostics
	Target Device Declaration
	Target Settings
	Connection Configuration
	Device Replacement with User Parameters
	EtherNet/IP I/O Mapping

	Ethernet Configuration
	Ethernet Services
	Presentation
	IP Address Configuration
	Modbus TCP Client/Server
	FTP Server
	FTP Client
	LMC078 Motion Controller as an IOScanner Slave Device on Modbus TCP

	Firewall Configuration
	Introduction
	Firewall Behavior
	Firewall Script Commands
	Script Files

	CANopen Configuration
	CANopen Interface Configuration
	CANopen Master Configuration
	CANopen Slave Configuration

	Sercos Configuration
	Overview of the Sercos Standard
	Sercos Interface Configuration
	Sercos Devices
	Device Addressing Editor
	Lexium LXM32S Drive Configuration
	TM5NS31 Sercos Interface Module
	Sercos Error Codes

	Serial Line Configuration
	Serial Line Configuration
	ASCII Manager
	SoMachine Network Manager
	Modbus Serial IOScanner
	Adding a Device on the Modbus Serial IOScanner
	Modbus Manager
	Adding a Modem to a Manager

	Connecting a Modicon LMC078 Motion Controller to a PC
	Connecting the Controller to a PC

	Firmware Update
	Updating Modicon LMC078 Motion Controller Firmware

	Appendices
	How to Change the IP Address of the Controller
	changeIPAddress: Change the IP address of the controller

	Diagnostic Messages
	Message Logger
	Diagnostic Messages

	LMC078 Sercos3 Library
	Data Types
	ST_SercosConfiguration Data Type
	ST_SercosConfigurationDevice Data Type
	ET_Sercos3CmdType Data Type
	ET_Sercos3IDNType Data Type

	Sercos Functions
	FC_SercosGetConfiguration Function
	FC_SercosReadServiceData Function
	FC_SercosReadServiceDataByTopAddr Function
	FC_SercosScanConfiguration Function
	FC_SercosWriteServiceData Function
	FC_SercosWriteServiceDataByTopAddr Function

	Asynchronous Sercos Function Blocks
	FB_SercosReadServiceDataAsync : Read Data Asynchronously via theSercos Interface
	FB_SercosWriteServiceDataAsync: Write Data Asynchronously via theSercos Interface
	FB_SercosProcedureCommandAsync: Send Commands Asynchronously via the Sercos interface

	Functions to Get/Set Serial Line Configuration in User Program
	GetSerialConf: Get the Serial Line Configuration
	SetSerialConf: Change the Serial Line Configuration
	SERIAL_CONF: Structure of the Serial Line Configuration Data Type

	Controller Performance
	Processing Performance

	Glossary
	Index

